Best Available Control Technology (BACT) Guideline 8.1.1*

Last Update: 7/19/2018

Woodworking Equipment

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	Woodworking equipment vented to a baghouse system		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.1.2*

Last Update: 5/11/2022

Corrugated Cardboard Manufacturing - Waste Handling System *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.1.3*

Last Update: 3/29/2023

Paper Handling - Paper Grinding Operation

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	99% capture and control (baghouse or equivalent)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.1.4*

Last Update: 4/17/2020

Cardboard Sawing

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	99% capture and control (cyclone in series with a fabric or cartridge filter dust collector, or equivalent)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.1.5*

Last Update: 6/15/2020

Glass Cullet Crusher

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	Baghouse with 99% control efficiency		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.2.1*

Last Update: 2/19/2020

Petroleum Coke Handling - Receiving, Storage, and Loadout

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	Receiving: Receiving operation vented to a baghouse		
	Storage/Conveying: Enclosed storage and adequate moisture to prevent visible emissions in excess of 5% opacity		
	Loadout: Loadout operation vented to a baghouse		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.2.2*

Last Update: 5/11/2022

Chrome Plating Operation - Hard Chrome Plating,= or > 5.00 MM Amp-hr/yr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.2.3*

Last Update: 8/16/2023

Chrome Plating Operation - Decorative Chrome Plating *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.2.4*

Last Update: 8/16/2023

Chrome Plating Operation - Limited Operation (= or < 500,000 Amp-hr/yr) *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.2.5*

Last Update: 4/21/2020

Munitions Cartridge Case Manufacturing - Metal *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.2.6*

Last Update: 4/21/2020

Brass/Bronze Foundry > or = 300 lb/hr Brass/Bronze Process Rate *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.3.1*

Last Update: 4/30/2020

Flat Glass Manufacturing - Adipic Acid Spraying System to Coat Flat Glass before Storage

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	Low Volume (≤ 2 Gallons per Hour per Nozzle) Ultrasonic Spray Equipment with Curtains on Both Sides of the Spray Modules (Minimum Transfer Efficiency of 90%)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.3.2*

Last Update: 12/7/2022

Animal Rendering Operations

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	95% control using one or more of the following control technologies: •Odor scrubbing system utilizing a scrubbing medium with appropriate chemical reagent(s), or •Thermal oxidizer utilizing natural gas with a minimum chamber temperature of 1400°F and minimum retention time of 1.0 second.	None	None
SOx	Use of an aqueous scrubber system (or equivalent controls) to reduce sulfur compounds (measured in terms of H2S) upstream of any other control devices	98% control using wet scrubber (or equivalent control)	None
PM10	95% control using one or more of the following control technologies: •Odor scrubber with a particulate removal system that consists of a particulate scrubber, shell and tube condenser, a Venturi scrubber, a cyclone, an air cooled condenser, and a contact condenser or a combination thereof, or	None	None
	•Thermal oxidizer utilizing natural gas with a minimum chamber temperature of 1400°F and minimum retention time of 1.0 seconds with a particulate removal system that consists of a particulate scrubber, shell and tube condenser, a Venturi scrubber, a cyclone, an air cooled condenser, and a contact condenser or a combination thereof.		

NOx Use of an aqueous scrubber None None system (or equivalent controls) to reduce reduce nitrogen compounds (measured in terms of ammonia) upstream of the thermal oxidizer to the maximum practically feasible extent; and use PUC-quality natural gas as a supplemental fuel in the regenerative thermal oxidizer (RTO)

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.3.3*

Last Update: 8/16/2023

Standby LPG Fuel Supply System - = or > 30 MMBtu/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.3.4*

Last Update: 5/6/2020

Metal Parts and Products Fabrication - Plasma Cutting

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	99.9% efficiency (dust collector with a HEPA filter or equivalent)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.3.5*

Last Update: 4/21/2020

Satellite Thruster Testing Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.3.6*

Last Update: 4/21/2020

Phosphate Fertilizer Manufacturing - Transportable, = or < 40 tons/hour *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.3.7*

Last Update: 9/4/2019

Plastic and Polymeric Material Processing - Grinding

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	Cyclone(s) in series with a fabric filter dust collector (99% or greater control efficiency)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.3.8*

Last Update: 10/10/2019

Explosives Detomation Chamber

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC		1. Thermal Oxidation	
		2. Carbon Adsorption	
		3. Non-Selective Catalytic Reduction	
SOx		 Wet scrubber using a slurry of alkaline sorbent (e.g. limestone) to scrub the gases 	
		2. Dry Scrubber Technology	
PM10	Use of wet scrubber (e.g. sodium hydroxide 0.5% solution), pre-filters and HEPA filtration system (HEPA filter reducing at least 99.97% of particulate matter 0.3 microns diameter or larger)		
NOx		Selective Catalytic Reduction	
		2. Non-Selective Catalytic Reduction	
СО		Oxidation Catalyst	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.3.9*

Last Update: 9/12/2022

Glass Packing Operation - For Flat Glass Manufacturing

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	Packing machine vented to a dust collector with 99% control efficiency		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.3.10*

Last Update: 3/24/2022

Cooling Tower - Induced Draft, Evaporative Cooling

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	High Efficiency Cellular- Type Drift Eliminator (0.0005% drift rate)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.3.11*

Last Update: 8/16/2023

Laser Cutting System *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.3.12*

Last Update: 4/21/2020

Helicopter Engine Test Cell *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.3.13*

Last Update: 8/16/2023

Carpet Padding Manufacturing – Fabric Fiber Separating Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.3.14*

Last Update: 8/28/2019

Tire Recycling Operation - Ground Tire Material Processing

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	99% Control (Fabric Filter Baghouse or equal)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.3.15*

Last Update: 4/21/2020

Solder Paste Manufacturing *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.3.16*

Last Update: 8/16/2023

Repair and Maintenance or Emergency Ammonia Venting Operation (=< 100 hr/yr operation) *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.3.17*

Last Update: 4/21/2020

Sulfur Powder Manufacturing (<= 4 MMBtu/hr Gas Generator) *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.3.18*

Last Update: 3/6/2007

Explosives Detonation - when unrestrained detonations or outdoor environmental conditions are required *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.3.19*

Last Update: 5/27/2020

Metal Grinding Operations

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	99% capture and control and use of a fabric filter dust collector or baghouse	Use of a dust collector or baghouse with 0.002 gr/dscf and equipped with HEPA filter (99.97%)	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.3.20*

Last Update: 8/16/2023

On-line Chemical Vapor Deposition Process *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.3.21*

Last Update: 4/23/2020

Abrasive Blasting Cabinet

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	Use of a dust collector or baghouse	Use of a dust collector or baghouse with 0.002 gr/dscf or equipped with HEPA filter	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.3.22*

Last Update: 7/26/2022

Scrap Metal Shredding

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC		1.Regenerative Thermal Oxidizer (RTO) with at least 95% control; or 2.Wet scrubber with at least 95% control efficiency; or 3.Activated carbon system with at least 95% control efficiency	
PM10	1.Use of wet suppression technology as necessary to limit visible emissions to no greater than 5% opacity as measured using EPA Method 9 (Visible Opacity)	1.Enclosed emissions points vented to a control device with 99% control efficiency (baghouse or equivalent) 2.Enclosed emissions points vented to a control device with 95% control efficiency (cyclone or equivalent)	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.4.1*

Last Update: 6/15/2020

Dry Material Storage and Handling Operations (Except Grains)

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	Storage, processing equipment, conveyors, and associated material transfer points all enclosed and vented to a fabric filter baghouse (99% control)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.4.2*

Last Update: 5/14/2020

Wet Material Storage and Conveying Operation

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	Enclosed storage with sufficient moisture so visible emissions are less than 5% opacity from any single emission point		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.4.3*

Last Update: 5/26/2020

Dry Material Handling Operation - Mixing, Blending, Milling, or Storage

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	Mixer, augers, elevators, conveyors, and storage all enclosed and vented to a fabric filter baghouse or equivalent (99% or greater control efficiency)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 8.4.4*

Last Update: 8/16/2023

Mulch and Soil Bagging Operation (Receiving, Outdoor Storage, and Bagging Line Hopper) *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.