Best Available Control Technology (BACT) Guideline 6.1.1*

Last Update: 7/31/2018

Aggregate Crushing, Screening & Storage Operation **RESCINDED - see Guideline 6.1.2**

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.1.2*

Last Update: 7/31/2018

Sand, Gravel, Aggregate, Recycled Asphalt & Recycled Concrete: Processing, Crushing, Screening and Storage Operations

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	1) CRUSHING: Water sprays allowing visible emissions no greater than 12% opacity as measured using EPA Method 9 (Visible Opacity) 2) SCREENING: Water sprays allowing visible emissions no greater than 7% opacity as measured using EPA Method 9 (Visible Opacity)	CRUSHING: Charged fog spray or water spray with chemical additives STORAGE (PILES): Water spray with chemical suppressant	
	3) CONVEYORS/TRANSFER POINT: Water sprays allowing visible emissions no greater than 7% opacity as measured using EPA Method 9 (Visible Opacity)		
	4) STORAGE (PILES): Water sprays allowing visible emissions no greater than 20% opacity as measured using EPA Method 9 (Visible Opacity)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.1.3*

Last Update: 4/21/2020

Sand Dryer - Fluidized Bed *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.1.4*

Last Update: 7/31/2018

Asphalt & Concrete Recycling - Crushing and Screening Operations **RESCINDED - see Guideline 6.1.2**

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.1.5*

Last Update: 4/21/2020

Rotary Aggregate Dryer - Remote Location Where Commercial Natural Gas is Not Available, (< or =) 15 tons aggregate/hr or (< o r=) 22.7 MMBtu/hr burner *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.1.6*

Last Update: 5/11/2022

Bulk Storage and Handling - Non-White Commodities* *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.2.1*

Last Update: 3/10/2008

Portland Concrete - Batch Plant, < 700 cubic yards/day **RESCINDED - See 6.2.2**

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.2.2*

Last Update: 7/31/2018

Concrete Batch Plant

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	1) SAND/AGGREGATE STORAGE: Outdoor storage piles adequately wetted a) to prevent visible emissions > 5% opacity, or b) with minimum moisture content of 2% for aggregate and 4% for sand	1) SAND/AGGREGATE STORAGE: Enclosed storage (building, silo, or equivalent) vented to a control device with 99% control efficiency (baghouse or equivalent) 2) CENTRAL MIXER LOADING: < 5 cubic yard batch capacity: enclosed mixer vented to a control device with	
	2) SAND/AGGREGATE HANDLING (ALL TRANSFER POINTS): Water sprays on all transfer points to prevent visible emissions > 5% opacity	99% control efficiency (baghouse or equivalent)	
	3) SAND/AGGREGATE WEIGH BATCHER: Material adequately wetted to prevent visible emissions > 5% opacity		
	4) STORAGE SILOS for CEMENT, FLYASH and OTHER SUPPLEMENTS: Enclosed silo vented to a control device with 99% efficiency (baghouse, bin vent or equivalent)		
	5) CEMENT/FLYASH/SUPPLE MENTS WEIGH BATCHER: Enclosed weigh batcher vented to a control device with 99% efficiency (baghouse or equivalent)		
	6) TRANSIT-MIXED TRUCK LOADING: Loading operation enclosed by a flexible shroud which seals to the truck and is vented to a control device with 99% efficiency (baghouse or equivalent)		
	7) CENTRAL MIXER LOADING: a) < 5 yd3 batch capacity: enclosed mixer with water sprays, b) > or = 5 yd3 batch capacity: enclosed mixer vented to a control device with 99% efficiency		

(baghouse or equivalent)

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.2.3*

Last Update: 4/21/2020

Portland cement bagging machine - Dry Mix, (= or >) 1292 tons/day of cement or (= or >) 1292 tons/day of cement plus concrete *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.2.4*

Last Update: 4/30/2020

Portland Concrete Products Manufacturing - Tumbler

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	Cartridge or fabric filter dust colletor		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.2.5*

Last Update: 9/12/2022

Portland Concrete Products Processing – Roof Tile *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.2.6*

Last Update: 8/16/2023

Portland Concrete Batch Plant - Auger Mixing System, = or < 360 cy/day *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.2.7*

Last Update: 12/30/2020

Concrete Roofing Tile Mold Releasing Oil Application Operation

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Use of mold releasing oils with a vapor pressure less than 2 mm Hg at 20 °C	 VOC capture and control with incineration (98% overall control efficiency) 	
		 VOC capture and control with carbon adsorption (95% overall control efficiency) 	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.3.1*

Last Update: 8/23/2018

Asphaltic Concrete - Mix Plant

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Enclosed hot mix silos and loadout operation vented to rotary dryer burner		
SOx	Natural gas or LPG as primary fuel		
PM10	Rotary drum vented to fabric collector or Venturi scrubber with centrifugal separator; enclosed conveyors, hot mix storage silos, two sided truck loadout; all vented to dryer or electrostatic precipitator or filter; and natural gas or LPG as a primary fuel		
NOx	3.5 ppmv @ 19% O2 using Low-NOx burner and either natural gas or LPG as primary fuel		
СО	42 ppmv @ 19% O2 using and either natural gas or LPG as primary fuel		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.3.2*

Last Update: 4/21/2020

Asphalt Treating Unit *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.3.3*

Last Update: 8/23/2018

Asphaltic Concrete Plant - Batch Mix **RESCINDED - see Guideline 6.3.1**

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.3.4*

Last Update: 10/10/2019

Asphalt Shingle Mfg. - Dry Material Receiving, Storage, and Processing Operations

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	Use of a baghouse/dust collector serving silos, enclosed conveyors, and process equipment with visible emissions not to exceed 1% opacity		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.3.5*

Last Update: 4/21/2020

Asphalt Roofing Shingle Mfg. - Process Heater, = or > 8 MMBtu/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.3.6*

Last Update: 4/21/2020

Asphalt Roofing Product Mfg. - Coating Operation, > 100 tons/day *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.3.7*

Last Update: 4/21/2020

Asphalt-Based Roofing Products - Mixer *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.4.1*

Last Update: 3/24/2022

Transportable Screening Operation - Green Waste, Wood Waste, and Compost Materials

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	Use of a water sprinkler system or maintaining adequate moisture content of the process materials to prevent visible emissions in excess of 5% opacity		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.4.2*

Last Update: 3/10/2020

Tub Grinder - Transportable, Wood Waste Processing

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	Use of a water sprinkler system or maintaining adequate moisture content of the process materials to prevent visible emissions in excess of 5% opacity		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.4.3*

Last Update: 7/16/2018

Green Waste, Wood Waste, and Composted Material - Transfer & Screening

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	Process materials with moisture content >= 25% and =< 30%; visible	Baghouse serving screen and enclosed conveyors	
	emissions not to exceed 5% opacity	2) Baghouse serving screen and process materials with moisture content >= 25% and =< 30%	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.4.4*

Last Update: 5/18/2020

Composted Materials - Potting Soil Mixing and Bagging Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.4.5*

Last Update: 8/24/2020

Biomass - Fuel Receiving, Handling, and Storage

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	BIOMASS FUEL STACKING AND OPEN STORAGE		
	Dust suppression to limit visible emissions from unloading/stacking operations and open storage areas to prevent visible emissions in excess of 5% opacity for any 3 minutes in any one hour period		
	BIOMASS FUEL PROCESSING, INCLUDING: RECEIVING, SCREENING, GRINDING, FINES REMOVAL, AND CONVEYING AND HANDLING		
	Receiving bin, screens, grinder, fines removal and augers, elevators, and conveyors all enclosed and vented to fabric filter baghouse		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.4.6*

Last Update: 4/21/2020

Composted Materials - Hydromulch Dryer *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.4.7*

Last Update: 11/21/2018

Co-Composting with Green and Food Materials and Biosolids *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.4.8*

Last Update: 3/6/2024

On-Farm Dairy Manure Composting

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Establish an initial Carbon to Nitrogen (C:N) ratio of between 25:1 and 40:1; and Maintain a temperature of between 131 F and 170 F for 15 days using a windrow composting system, during which period, the materials must be turned a minimum of five times	1. 99% overall capture and control efficiency for both active and curing composting phases (composting in enclosure vented to a scrubber, or equivalent) 2. 95% overall capture and control efficiency for both active and curing composting phases (composting in enclosure vented to an activated carbon system, or equivalent)	
		3. 80% overall capture and control efficiency for both active and curing composting phases (positively aerated piles with Gore Covers, or equivalent)	
NH3	Establish an initial Carbon to Nitrogen (C:N) ratio of between 25:1 and 40:1; and Maintain a temperature of between 131 F and 170 F for 15 days using a windrow composting system, during	99% overall capture and control efficiency for both active and curing composting phases (composting in enclosure vented to a scrubber, or equivalent) 95% overall capture and control efficiency for both active and curing	
	which period, the materials must be turned a minimum of five times	composting phases (composting in enclosure vented to an activated carbon system, or equivalent) 3. 80% overall capture and control efficiency for both active and curing composting phases (positively aerated piles with Gore Covers, or equivalent)	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.4.9*

Last Update: 11/21/2018

Co-Composting Operation with Green and Food Materials and Manure: < 20,000 ton/year throughput *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.4.10*

Last Update: 9/29/2023

Organic Material* Composting

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC 80% cor and pha the • Po win eng equ • No	80% overall capture and control efficiency for active and curing composting phases, consisting of one of the following options: • Positively aerated static windrow piles with engineered covers or equivalent, or • Negatively aerated static windrow piles vented to a biofilter or equivalent	1. 99% overall capture and control efficiency for both active and curing composting phases (composting in enclosure vented to a scrubber, or equivalent) 2. 95% overall capture and control efficiency for both active and curing composting phases (composting in enclosure vented to an activated carbon system, or equivalent)	
NH3	80% overall capture and control efficiency for active and curing composting phases, consisting of one of the following options: • Positively aerated static windrow piles with engineered covers or equivalent, or • Negatively aerated static windrow piles vented to a biofilter or equivalent	1. 99% overall capture and control efficiency for both active and curing composting phases (composting in enclosure vented to a scrubber, or equivalent) 2. 95% overall capture and control efficiency for both active and curing composting phases (composting in enclosure vented to an activated carbon system, or equivalent)	

* For the purposes of this BACT Guideline, "Organic Material" is as defined in District Rule 4566

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.4.11*

Last Update: 3/29/2023

Co-Composting with Organic Material, Biosolids, Poultry Litter or Animal Manure >= 60,000 ton/yr

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	80% overall capture and control efficiency for both active and curing composting phases (positively aerated piles with Gore Covers, or equivalent)	1.99% overall capture and control efficiency for both active and curing composting phases (composting in enclosure vented to a scrubber, or equivalent) 2.95% overall capture and control efficiency for both active and curing composting phases (composting in enclosure vented to an activated carbon system, or equivalent)	
NH3	80% overall capture and control efficiency for both active and curing composting phases (positively aerated piles with Gore Covers, or equivalent)	1.99% overall capture and control efficiency for both active and curing composting phases (composting in enclosure vented to a scrubber, or equivalent) 2.95% overall capture and control efficiency for both active and curing composting phases (composting in enclosure vented to an activated carbon system, or equivalent)	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.4.14*

Last Update: 8/16/2023

Biosolids Storage (Not Intended for Composting) *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.4.15*

Last Update: 3/29/2023

Composting Feedstock Receiving, Mixing, and Stockpiles (Non-biosolids)

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	>=100,000 tons/year: process green waste, animal manure, and poultry litter within 3 days of receipt and process food waste within 48 hours of receipt by: 1) removing the feedstock from the facility, or 2) starting the active phase of composting, or 3) covering the feedstock material with a waterproof cover that has at least six feet of overlap of adjacent sheets and is securely anchored, or implementing an APCO approved alternative mitigation measure. (10% control efficiency);	1. Organic feedstock materials received, mixed, and stockpiled in an enclosed building vented to a scrubber. (99% combined capture and control efficiency) 2. Organic feedstock materials received, mixed, and stockpiled in an enclosed building vented to a carbon adsorption system. (95% combined capture and control efficiency) 3. Organic feedstock materials received, mixed, and stockpiled in an enclosed building vented to a biofilter. (80% combined capture and control efficiency)	
	<100,000 tons/year: process green waste, animal manure, and poultry litter within 7 days of receipt and process food waste within 48 hours of receipt by: 1) removing the feedstock from the facility, or 2) starting the active phase of composting, or 3) covering the feedstock material with a waterproof cover that has at least six feet of overlap of adjacent sheets and is securely anchored, or implementing an APCO approved alternative mitigation measure. (10% control efficiency)		

NH3

>=100,000 tons/year: process green waste, animal manure, and poultry litter within 3 days of receipt and process food waste within 48 hours of receipt by: 1) removing the feedstock from the facility, or 2) starting the active phase of composting, or 3) covering the feedstock material with a waterproof cover that has at least six feet of overlap of adjacent sheets and is securely anchored, or implementing an APCO approved alternative mitigation measure. (10% control efficiency);

<100,000 tons/year: process green waste, animal manure, and poultry litter within 7 days of receipt and process food waste within 48 hours of receipt by: 1) removing the feedstock from the facility, or 2) starting the active phase of composting, or 3) covering the feedstock material with a waterproof cover that has at least six feet of overlap of adjacent sheets and is securely anchored, or implementing an APCO approved alternative mitigation measure. (10% control efficiency)

- 1.Organic feedstock materials received, mixed, and stockpiled in an enclosed building vented to a scrubber. (99% combined capture and control efficiency)
- 2.Organic feedstock materials received, mixed, and stockpiled in an enclosed building vented to a carbon adsorption system. (95% combined capture and control efficiency)
- 3.Organic feedstock materials received, mixed, and stockpiled in an enclosed building vented to a biofilter. (80% combined capture and control efficiency)

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.5.1*

Last Update: 4/30/2020

Synthetic Stone Products Manufacturing

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	Capture and Control with a Baghouse or Equivalent Control Device		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 6.5.2*

Last Update: 7/28/2021

Soda Ash Loading into Cargo Ships

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	Use of an engineered telescopic spout consisting of inner and outer sleeve with a neoprene (or other similar durable material) skirt vented to a dust collection system.		
	During loading, the telescopic spout shall be operated in a manner that maintains minimum drop height of the material such that the loading process remains in compliance with permitted visible emission limit(s).		
	(98% control)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.