Best Available Control Technology (BACT) Guideline 2.1.1*

Last Update: 3/15/2023

Soil Remediation Operation - Thermal/Catalytic Oxidizer

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	98.5% overall capture and control for VOC inlet concentrations >= 2000 ppmv;		
	97% overall capture and control for VOC inlet concentrations < 2000 ppmv and >= 200 ppmv;		
	95% overall capture and control for VOC inlet concentrations < 200 ppmv		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 2.1.2*

Last Update: 5/11/2022

Soil Remediation Operation - I.C. Engine *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 2.1.3*

Last Update: 5/11/2022

Soil Remediation Operation - Carbon Adsorption *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 2.1.4*

Last Update: 5/6/2020

Extracted Soil Remediation using Steam Stripping/Flushing and 4-Stage Carbon Adsorption, > or = 40 tons/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 2.1.5*

Last Update: 5/11/2022

Soil Remediation Operation - Above-ground Bioremediation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 2.1.6*

Last Update: 5/6/2020

Soil Remediation Operation - Boiler, = or < 4.2 MMBtu/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 2.1.7*

Last Update: 5/11/2022

Soil Remediation Operation - Thermal Soil Desorber *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 2.2.1*

Last Update: 4/20/2020

Non-hazardous Wastewater Receiving, Treatment, and Impoundment *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 2.2.2*

Last Update: 5/11/2022

Landfill - VOC-Contaminated Soil *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 2.2.3*

Last Update: 12/30/2021

Cheese Wastewater Digester

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Enclosed flare with a VOC control efficiency of 98% by weight or VOC emissions =< 20 ppmv @ 3% O2	Ultra low emissions flare with a VOC control efficiency >= 99% by weight or VOC emissions =< 20 ppmv @ 3% O2, and NOx emissions =< 0.025 lb/MMBtu	
SOx	99% H2S removal (dry or wet scrubber)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 2.3.1*

Last Update: 4/20/2020

Contaminated Water Remediation - Mobile Air Stripper, = or > 750 cfm Air Stream *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.