DEMONSTRATION OF A COMPACT SCR™ SYSTEM MEETING 0.07 LB/MWH NOx IN A BIOGAS ENGINE

FINAL REPORT

June 24, 2014

Submitted to: San Joaquin Valley Unified Air Pollution Control District

Demonstration of a Compact SCRTM System Meeting 0.07 lb/MWH NOx in a Biogas Engine

Final Report

<u>Submitted to</u> Technology Advancement Program San Joaquin Valley Unified Air Pollution Control District 1990 East Gettysburg Ave. Fresno, CA 93726

Contract No. C-4236

June 24, 2014

<u>Submitted by</u> Christopher S. Weaver, P.E. Engine, Fuel, and Emissions Engineering, Inc. 8614 Unsworth Avenue, Suite 100 Sacramento, CA 95828 USA (916) 368-4770

EXECUTIVE SUMMARY

Engine, Fuel, and Emissions Engineering, Inc. (EF&EE) received a grant from the San Joaquin Valley Air Unified Air Pollution Control District under the District's Technology Advancement Program. The purpose of this grant was to develop and demonstrate a compact selective catalytic reduction (SCR) system capable of meeting the California Air Resources Board (ARB) standard for distributed generation systems of 0.07 pounds of NOx per megawatt-hour of useful energy output (lb/MWH). This goal has been achieved, with NOx emissions of 0.028 lb/MWH (equivalent to 0.69 ppmvd or 0.009 g/BHP-hr) measured by independent source testing. Ammonia slip was 3.0 ppmvd, which is well below the limit of 10 ppmvd considered BACT.

It should be noted that the achieved value of 0.028 pounds of NOx per MWH was calculated with respect to only the <u>electrical</u> output of the engine-generator. For cogeneration systems, ARB rules allow the calculation to be made against the sum of the electrical and useful thermal outputs. Depending on the cogeneration system design, useful thermal output from a lean-burn engine is typically between 50% and 120% of the electrical output. This would result in NOx emissions between 0.013 and 0.019 lb/MWH

The SCR system developed under this grant was installed on a lean-burn, spark-ignition biogas engine at the Joseph Gallo Cheese Company plant near Atwater, CA. Two different SCR catalyst types were tested. One type was provided with a platinum coating on the downstream end to control emissions of excess ammonia reductant from the SCR system (ammonia slip). This coating also helped to oxidize carbon monoxide emissions from the engine. The second catalyst type was similar in composition but lacked the platinum coating on the downstream end.

The effects of each catalyst type on NOx and ammonia emissions were determined as functions of exhaust temperature, engine power output, and reductant flow rate. The second catalyst type was found to give better NOx control efficiency, and was the one used to demonstrate compliance with the ARB standard. The platinum slip catalyst on the first catalyst type was found to oxidize ammonia to NOx, resulting in higher minimum NOx levels than for the second type. Only the second type was found capable of meeting the 0.07 lb/MWH NOx standard.

The performance of both SCR catalyst types is affected by exhaust temperature. Minimum NOx levels were similar from 320 to 410 C, but increased significantly at 440 C. The independent source testing was conducted a catalyst exit temperature of 405 C. Higher temperatures will result in lower NOx control efficiency and/or higher ammonia emissions. The high temperature limit for meeting the 0.07 lb/MWH standard is probably between 410 and 440 C. Equivalent or improved performance is expected at lower temperatures, down to at least 320 C.

The second catalyst type gives lower NOx emissions, but lacks CO oxidation activity. Thus, to provide adequate compliance margin, a separate CO oxidation catalyst is recommended to be installed upstream of the urea injection point. The added cost of the CO oxidation catalyst is estimated at less than \$3,000.

At the time of testing, the catalyst elements of the second type had accumulated about 740 operating hours. Catalyst efficiency is expected to degrade slowly with increased operating time. Based on experience with the SCR control system at the Fiscalini Dairy, the useful life of the SCR catalyst is estimated to be 30,000 to 40,000 hours before it can no longer maintain the target levels of NOx control. EF&EE plans to perform follow-up measurements at approximately annual intervals in order to monitor catalyst performance over time. The results of these follow-up measurements will be submitted to the District as addenda to this report.

In addition to optimizing NOx reduction efficiency, operating the SCR catalyst at the moderate temperature employed here would help to protect the catalyst from degradation due to siloxanes in the fuel. Siloxanes are silicon compounds commonly found as contaminants in biogas from landfills and sewage digesters, and can damage catalytic converters. Siloxanes burn in the engine to form silicon dioxide in the exhaust. At these moderate exhaust temperatures, silicon dioxide is expected to form solid particles, rather than depositing on the catalyst. If so, then this SCR technology should be highly tolerant of siloxane contamination of the fuel. Additional testing is recommended using these catalysts with exhaust streams from internal-combustion engines burning sewage gas or landfill gas in order to assess this possibility.

CONTENTS

1. I	NTRODUCTION
2. B	BACKGROUND
2.1	Biogas Distributed Generation2
2.2	ARB Distributed Generation Standards2
2.3	Best Available Control Technology
3. S	SYSTEM DESIGN, INSTALLATION, STARTUP, AND OPERATIONS
4. E	EMISSIONS OPTIMIZATION WITH PLATINUM SLIP CATALYST9
4.1	Instrumentation and sampling9
4.2	Test matrix9
4.3	Test results
5. E	EMISSIONS OPTIMIZATION WITHOUT PLATINUM SLIP CATALYST 12
5.1	Instrumentation and sampling12
5.2	Test matrix
5.3	Test results
6. C	CONCLUSIONS AND PLANS FOR FURTHER WORK
APPE	NDIX A: SOURCE TEST REPORT

V

LIST OF TABLES

Table 1: A	Air quality	permit conditio	ns and source	test results		3
------------	-------------	-----------------	---------------	--------------	--	---

LIST OF FIGURES

Figure 1: System flow diagram for heat recovery system
Figure 2: Diagram of the urea metering and control system
Figure 3: SCR catalyst assembly - installation drawing
Figure 4: SCR catalyst assembly outlet junction pipe
Figure 5: SCR catalyst assembly installed in exhaust pipe, without insulation7
Figure 6: SCR catalyst assembly and waste heat boiler, after insulation7
Figure 7: SCR system controller and urea metering pump assembly
Figure 8: NOx and NOx + ammonia concentrations vs. urea flow rate and temperature for SCR with platinum slip catalyst
Figure 9: NOx and NOx + ammonia concentrations compared for SCR with platinum slip catalyst
Figure 10: NOx and NOx + ammonia concentrations vs. urea flow rate and temperature for SCR without slip catalyst
Figure 11: NOx and NOx + ammonia concentrations compared for SCR without slip catalyst. 14
Figure 12: Range of urea injection rates for the old Optimin vs. new self-tuning algorithm 15
Figure 13: Typical CO oxidation catalyst element

1. INTRODUCTION

Engine, Fuel, and Emissions Engineering, Inc. (EF&EE) received a grant from the San Joaquin Valley Air Unified Air Pollution Control District under the District's Technology Advancement Program. The purpose of this grant was to develop and demonstrate a selective catalytic reduction (SCR) system capable of meeting the California Air Resources Board (ARB) standard for oxides of nitrogen (NOx) emissions from distributed generation systems. The ARB standard limits distributed generation systems to a maximum of 0.07 pounds of NOx emissions per megawatt-hour of useful energy output (lb/MWH).

The SCR system developed under this grant was installed on a lean-burn, spark-ignition biogas engine at the Joseph Gallo Cheese Company plant near Atwater, CA. That engine produces electric power for use by the cheese plant and for export. Biogas fuel for the engine is supplied by covered-lagoon digesters processing manure from the Joseph Gallo and Santa Rita dairies. Waste heat in the engine exhaust is captured in a heat recovery steam generator. The resulting steam is supplied to the cheese plant for process use.

The demonstration project assessed the capabilities of two different SCR catalyst types. One catalyst type was provided with a platinum coating on downstream end to control emissions of excess ammonia reductant from the SCR system (ammonia slip). This coating also helped to oxidize carbon monoxide emissions from the engine. The second catalyst type was similar in composition but lacked the platinum coating on the downstream end. The effects of each catalyst type on NOx and ammonia emissions were determined as functions of exhaust temperature, engine power output, and reductant flow rate.

The project comprised the following tasks:

- 1. System design
- 2. Procurement and assembly
- 3. Installation and startup
- 4. Emissions optimization with the platinum slip catalyst
- 5. Emissions optimization without platinum slip catalyst
- 6. Independent source testing of the engine fitted with the optimized system
- 7. Final report

Work on the project began in January, 2011; and was completed in April, 2014. This final report responds to Air District comments on the draft report submitted in April 2014.

2. BACKGROUND

2.1 BIOGAS DISTRIBUTED GENERATION

The use of biogas produced from animal manure in combined heat-and-power (CHP) systems offers many environmental benefits. The biogas digestion process reduces odors, VOC, methane, and ammonia emissions from the manure, while the digester effluent retains most of the plant nutrients and can safely be used as fertilizer. The resulting biogas can be used in an internal-combustion engine to produce electricity – thus displacing fossil fuels – while the waste heat from the engine exhaust and cooling jacket is recovered as steam and hot water for heating, sterilization and process uses. This heat would otherwise have to be produced by burning fossil fuels. Thus, the process eliminates a waste disposal and water pollution problem while reducing consumption of fossil fuels and emissions of methane, CO_2 , odor, ammonia, and VOC.

Lean-burn, spark-ignition reciprocating engines can burn biogas with only minimal processing to remove excess water vapor. These engines have proven durable, reliable, and efficient in this application. Capital and operating costs are also low compared to many distributed generation technologies. Their main drawback is relatively high pollutant emissions, especially of oxides of nitrogen (NOx).

2.2 ARB DISTRIBUTED GENERATION STANDARDS

The California Air Resources Board (ARB) has established pollutant emission standards for distributed generation systems (CCR 17, §94203). Since 2007, these standards have limited NOx emissions to a maximum of 0.07 lb/MWH of useful energy output. That standard was based on the estimated emissions from a state-of-the-art combined-cycle central power plant, equipped with selective catalytic reduction. Carbon monoxide (CO) emissions are limited to 0.10 lb/MWH, and volatile organic compounds (VOC) to 0.02 lb/MWH.

The ARB distributed generation standards do not apply to distributed generation systems that are subject to the local air quality district permitting process. That process is complex, but most local air district permits mandate the application of "best available control technology" or BACT. For spark-ignition engines in practice, the requirement for BACT has been less restrictive than the ARB standard. However, the ARB standard remains relevant to those engines, as it controls eligibility for certain incentive grants and other programs.

California SB 412 of 2009 restored the eligibility of reciprocating engine-based CHP systems for the Small Generator Incentive Program (SGIP), but limits it to engines meeting the 0.07 lb/MWH standard. Incentive payments for biogas engines under the SGIP program could amount to as much as \$2,500 per kilowatt of electric capacity; or more than half of the capital cost of the system.

Separately, in Rule 1110.2, the South Coast AQMD has established the same 0.07 lb/MWH NOx limit for new engines driving electric generators. This rule includes an exception for biogas engines (which remain subject to BACT), but would apply to natural gas engines in combined heat-and-power applications.

2.3 BEST AVAILABLE CONTROL TECHNOLOGY

BACT for control of NOx emissions from natural gas engines has long been considered as being 0.15 g/BHP-hr, which has been calculated as equivalent to between 9 and 12 parts per million NOx, (calculated on a dry basis and corrected to 15% oxygen, and abbreviated ppmvd). This has been based on the use of SCR in a lean-burn engine. This is generally complimented by a limit of 10 ppmvd for ammonia slip from the SCR system.

Until recently, BACT for biogas engines was considered to be 0.60 g/BHP-hr. This was based on the use of a lean air-fuel ratio and retarded spark timing. It was not considered practical to apply SCR to these engines due to the variability in the composition of the biogas. This variable composition affects the air-fuel ratio, causing engine-out NOx concentrations to vary widely. In addition, biogas from non-agricultural sources is often contaminated with siloxanes, which burn in the engine to produce silicon dioxide. The resulting silicon dioxide dust can foul the SCR catalyst.

In a project at the Fiscalini Dairy in Modesto, it was demonstrated that a lean-burn engine burning dairy biogas, and equipped with EF&EE's Compact SCRTM and exhaust NOx sensors could consistently meet the natural gas engine BACT limit. This has led to the acceptance of 0.15 g/BHP-hr NOx as BACT for biogas engines as well.

The present IC engine BACT limit is equivalent to about 0.35 lb/MWH with no heat recovery, or to about 0.15 to 0.20 lb/MWH assuming typical heat-recovery rates for CHP systems. To meet the 0.07 lb/MWH standard, therefore, would require catalyst-out NOx levels around 0.03 to 0.05 g/BHP-hr, equivalent to 2 to 4 ppmvd.

3. SYSTEM DESIGN, INSTALLATION, STARTUP, AND OPERATIONS

The demonstration SCR system was installed on a Guascor SFGLD 480 engine-generator set located in a covered shed adjacent to the Joseph Gallo Cheese Company plant. The generating set is rated at 800 kW electric, but the plant operators have limited maximum power output to 750 kW for reasons of reliability and durability.

Since Tasks 4 and 5 of this contract required us to optimize the exhaust temperature going into the SCR catalyst, it was necessary to design a system for varying that temperature. The design approach selected in consultation with the Joseph Gallo Project Engineer is diagrammed in Figure 1.

As Figure 1 shows, a pair of dampers split the exhaust flow from the engine into two streams, A and B. Stream B flows through the first pass of a three-pass firetube-type heat-recovery boiler. This exhaust stream transfers heat to the water in the boiler, forming steam. Upon exit from the boiler, the two exhaust streams are recombined. The temperature of the recombined exhaust stream may range from about 330 to 440 C, depending on the position of the dampers and the engine power output. In the original design, a thermocouple transmitted the recombined exhaust temperature to the control PLC, which adjusted the damper positions to bring it to the desired setpoint. Following the failure of the pneumatic damper actuator, this was replaced by a simpler system in which the damper position was set by hand.

Urea is injected into and mixes with the recombined exhaust stream before it enters the SCR catalyst, where the reactions take place to convert NOx to N_2 and water. After leaving the SCR catalyst, the exhaust passes through a second set of dampers, from which it either passes back through the second pass of the boiler or directly to the stack. The design allows the boiler to be bypassed completely when there is no demand for steam, or to allow cleaning of the boiler tubes.

The operation of the OptiminTM urea metering and control system is diagrammed in Figure 2. Sensors communicate the temperature, pressure, and NOx concentration upstream and the temperature and NOx concentration downstream of the SCR catalyst to the PLC control unit. An analog signal from the engine controller communicates the engine load. The controller calculates the NOx flow rate from the engine load and upstream NOx concentration, then calculates the urea injection rate required to fully react with that quantity of NOx. This injection rate is communicated to the metering pump, which mixes the required amount of urea solution with the compressed air stream flowing to the nozzle.

The downstream NOx sensor supplies feedback to the urea metering system. To optimize the urea injection rate, the OptiminTM control algorithm slightly varies the ratio of urea injected to estimated NOx flow, while observing the effect on downstream NOx concentrations. If a change results in lower average NOx concentrations downstream, change continues in the same direction. If average NOx concentrations increase, the direction of change is reversed. This is the same hardware and control approach that was successfully applied in the Fiscalini Dairy demonstration.

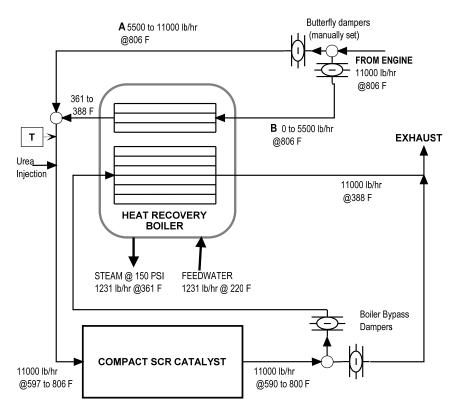


Figure 1: System flow diagram for heat recovery system

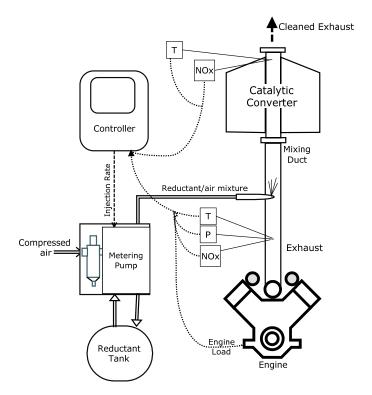


Figure 2: Diagram of the urea metering and control system

The SCR catalyst selected for this project is an EF&EE CM12CA catalyst assembly, comprising twelve round cellular ceramic catalyst modules of 14.9 liters each. This is also the same design used at Fiscalini Dairy. Figure 3 shows the overall dimensions and structure of this assembly. The Joseph Gallo Project Engineer designed a supporting structure for the SCR catalyst assembly. EF&EE was responsible for design of the junction pipe to recombine the two outlet streams from the SCR catalyst. This junction pipe is shown in Figure 4.

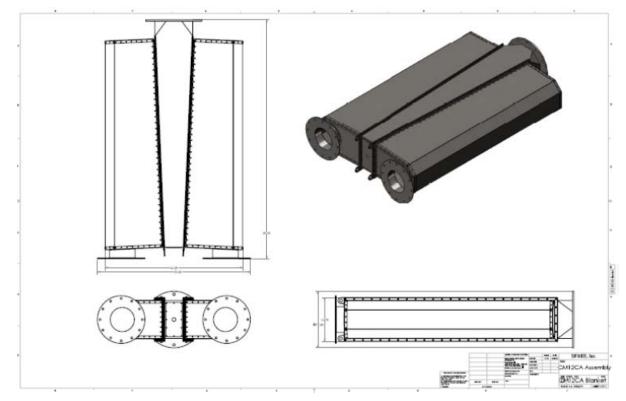


Figure 3: SCR catalyst assembly - installation drawing

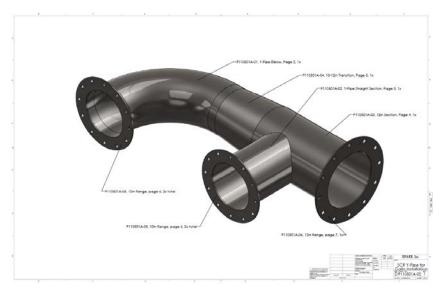


Figure 4: SCR catalyst assembly outlet junction pipe

Construction at the host site was largely completed and the SCR system was installed in January, 2012. The engine was test-run in February, 2012 with the SCR catalyst in place. Figure 5 shows the complete SCR catalyst assembly installed in the exhaust system.

Figure 5: SCR catalyst assembly installed in exhaust pipe, without insulation

Due to supplier delays, the heat-recovery steam generator was not delivered until August, 2012. Commissioning of the SCR system and source-testing for the operating permit finally took place after the HRSG was installed and insulation was applied to the exhaust piping and the boiler. Figure 6 shows the boiler and insulated exhaust piping. The SCR catalyst assembly is under the insulating blankets at the upper left. Figure 7 shows the control unit and urea metering pump.

Figure 6: SCR catalyst assembly and waste heat boiler, after insulation

Figure 7: SCR system controller and urea metering pump assembly

Conditions for the proposed air quality permit were negotiated between Joseph Gallo Farms and the District, with technical input from EF&EE. The resulting conditions are shown in Table 1. These corresponded to the District's present definition of BACT for engines fueled by natural gas and biogas. The goal of the project was to demonstrate NOx levels well below 0.15 g/BHP-hr, but the ability to do so over the long term had not yet been demonstrated. Thus, it was considered inappropriate to include these lower emission levels as a condition of the permit.

	Permit Condition		Source T	est Result
Pollutant	ppmvd	g/BHP-hr	ppmvd	g/BHP-hr
NOx	9	0.15	4.66	0.052
Ammonia	10		1.50	
СО	123	0.95	17.3	0.12
VOC	48.2	0.20	<0.20	< 0.001
PM		0.04		0.023

Table 1: Air quality permit conditions and source test results

Source testing was conducted on September 25th, 2012, and the results are also shown in Table 1. These results were obtained with the platinum slip catalyst, the then-standard version of the Optimin self-tuning algorithm, and with the exhaust bypass valve fully closed to give a temperature of about 325 C downstream of the catalyst.

4. EMISSIONS OPTIMIZATION WITH PLATINUM SLIP CATALYST

The SCR catalyst assembly was initially loaded with catalyst modules that included the platinum slip catalyst on the downstream end. The emissions optimization study with this initial catalyst charge was conducted on February 27 and 28, 2014. At that point, the SCR system had accumulated about 9,030 operating hours, out of an estimated operating life of at least 40,000 hours. This is substantially more than the operating time normally considered necessary to stabilize the catalyst. The delay was due to difficulty in securing a suitable Fourier-transform infrared (FTIR) analyzer to measure ammonia and nitrous oxide (N₂O) emissions.

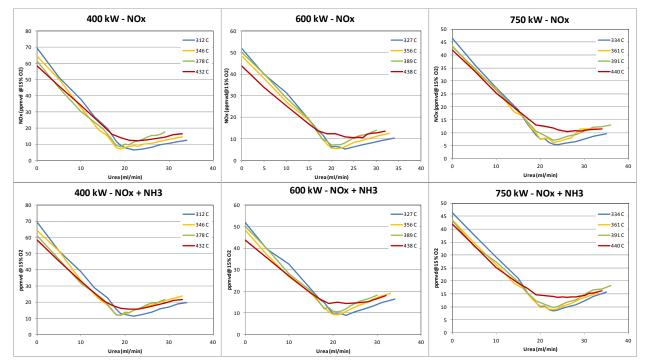
4.1 INSTRUMENTATION AND SAMPLING

Exhaust gas was sampled from a port immediately downstream of the HRSG, and conducted to the gas analyzers via a heated sample line. NOx emissions in the raw exhaust were measured "wet" (without removing water vapor) by a California Analytical Instruments (CAI) 600 HCLD heated chemilumenescent analyzer. Total hydrocarbons (THC) were also measured "wet", using a CAI 600 HFID heated flame ionization detector. CO and CO₂ were measured "dry" using a CAI 603 NDIR non-dispersive infrared analyzer. Water vapor removal for the dry measurements was accomplished by a NafionTM moisture exchanger arranged in counterflow. The moisture sink was a stream of atmospheric air that had been passed through a silica-gel dessicant bed. The analyzers were calibrated using an NTIS-traceable multi-gas calibration mixture.

We were ultimately unable to secure an FTIR analyzer for ammonia measurements. We therefore fell back on the downstream NOx sensor of the SCR control system instead. This sensor responds to both NOx and ammonia. The sensor was calibrated to agree with the chemilumenescent analyzer under conditions of zero urea injection. (In the absence of urea injection, there would be no ammonia slip, and the NOx sensor should thus agree with the NOx measurement). By subtracting the chemilumenescent NOx value from the NOx sensor reading, it was possible to calculate the ammonia concentration.

4.2 TEST MATRIX

As described earlier, the SCR catalyst is located in the exhaust flow between the first and second passes through the fire-tube boiler. The bypass valve can be set to allow a varying percentage of the exhaust flow to bypass the initial boiler pass. With the bypass valve fully closed, the exhaust temperature at the SCR catalyst ranged from 312 to 337 C, depending on engine power output. When fully open, the temperature ranged from 432 to 440 C.


The test matrix was defined with exhaust bypass settings of fully-closed, 1/3 open, 2/3 open, and fully open; and with engine power output levels of 400, 600, and 750 kW. This gave a total of 12 test conditions: four temperatures at each of three exhaust flow rates. The exhaust bypass

valve was positioned first, and the electrical power output of the generator was then set to 400, 600, and 750 kW in turn.

For each combination of power output and bypass valve setting, emissions were recorded at 12 to 17 separate urea flow settings, beginning with zero and increasing up to between 30 and 36 milliliters per minute. Each urea flow setting was maintained for approximately 200 seconds. The emission results for each setting were calculated as the average over the last 60 seconds of that period. The period of ~140 seconds before averaging started was included to allow the level of ammonia adsorption onto the catalyst to stabilize at each setting.

4.3 TEST RESULTS

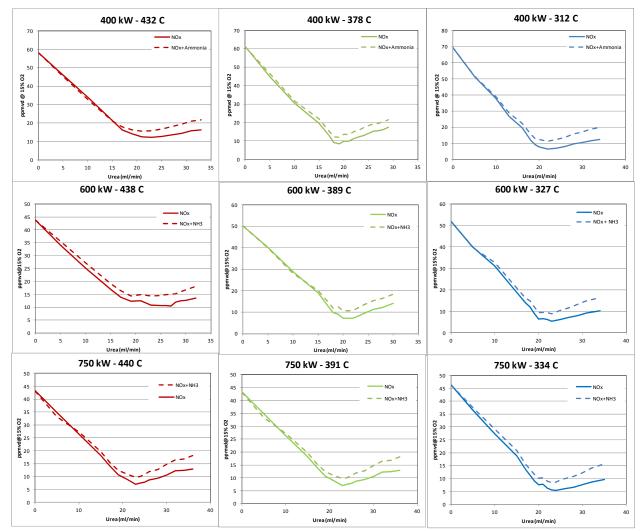

The measured concentrations of NOx (from the chemilumenescent analyzer) and NOx + ammonia (from the NOx sensor) are plotted below. Both sets of measurements are corrected to $15\% O_2$ dry basis, so that the values are directly comparable to the permit limits. At low rates of urea injection, the NOx concentration goes down linearly as the urea injection rate goes up. In this regime, there is too little ammonia present to react with all of the NOx, so the levels of ammonia slip are low. At high rates of urea injection, the NOx concentration rate. Here, there is excess ammonia present, and some of the excess reacts on the platinum slip catalyst to form NOx. The fraction of the ammonia that reacts in this way increases with temperature. The area of greatest interest is in the transition between these two regimes, where the NOx concentration reaches a minimum. For exhaust temperatures below 360 C, this minimum is about 5 to 6 ppmvd, but it increases to about 10-11 ppmvd at 432 to 440 C.

Figure 8: NOx and NOx + ammonia concentrations vs. urea flow rate and temperature for SCR with platinum slip catalyst

The plots below compare the measured values for NOx plus ammonia (from the NOx sensor) to the NOx measured by the chemilumenescent analyzer. The distance between the two lines is the ammonia concentration. As these plots show, the ammonia concentrations are well below the 10 ppmvd limit, even where the amounts of urea injected are significantly greater than optimal. This is because the platinum slip catalyst is converting much of the excess ammonia to NOx.

Figure 9: NOx and NOx + ammonia concentrations compared for SCR with platinum slip catalyst

The existing OptiminTM self-tuning algorithm takes the NOx + ammonia signal from the downstream NOx sensor, and is designed to adjust the urea injection rate to a small range centered on the minimum in the NOx + ammonia curves shown Figure 9. Comparing the NOx and NOx + ammonia curves, it can be seen that the urea injection rate that produces a minimum in the latter is also very close to that giving the minimum value in the former.

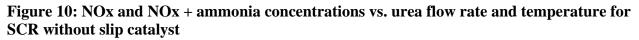
5. EMISSIONS OPTIMIZATION WITHOUT PLATINUM SLIP CATALYST

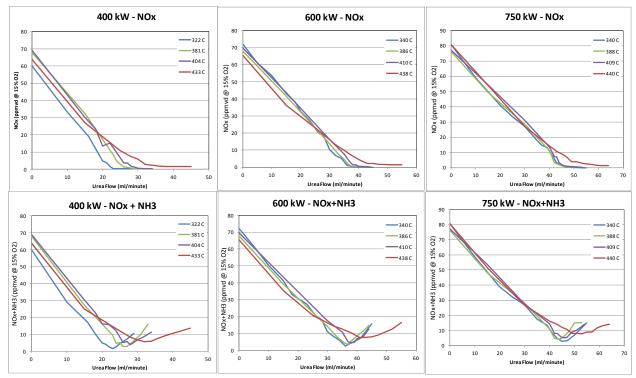
Once the emissions optimization study was completed, the SCR catalyst modules with the platinum slip catalyst were exchanged for new modules without the slip catalyst. The change was made on March 5^{th} , 2014. Emissions optimization studies on the new catalyst modules were carried out on April 9 and 10, 2014. At that point, the new catalyst modules had accumulated about 740 operating hours.

5.1 INSTRUMENTATION AND SAMPLING

The sampling and instrumentation for these measurements were the same as those for Task 4, described in the preceding section. The downstream NOx sensor on the SCR control system was used to measure the sum of NOx and ammonia emissions. Simultaneously, NOx emissions were measured separately from ammonia using the CAI 600 HCLD analyzer. With no urea being injected, and sufficient time allowed for any urea present to have decomposed, both the upstream and downstream NOx sensors agreed with the chemilumenescent analyzer within a few ppm. This was as-expected – in the absence of urea injection, there would be no ammonia slip, and the NOx+NH₃ signal should thus agree with the NOx measurement.

5.2 TEST MATRIX


The test matrix was defined with exhaust bypass settings of fully-closed, 2/3 open, ~85% open, and fully open; and with engine power output levels of 400, 600, and 750 kW. This gave a total of 12 test conditions: four temperatures at each of three exhaust flow rates. The exhaust bypass valve was positioned first, and the electrical power output of the generator was then set to 400, 600, and 750 kW in turn.


The ~85% open position of the exhaust bypass valve represents a change from the testing done in Task 4. The Task 4 testing showed little difference in catalyst performance between the closed, 1/3 open, and 2/3 open positions, but a substantial change between the 2/3 open and full-open conditions. The 85% open position was therefore substituted for the 1/3 open condition, in order to provide more detail on the transitional region. This position gave an exhaust temperature of about 410 C downstream of the SCR catalyst assembly.

For each combination of power output and bypass valve setting, emissions were recorded at 10 to 16 separate urea flow settings, beginning with zero and increasing up to between 33 and 64 milliliters per minute. Each urea flow setting was maintained for approximately 200 seconds, of which only the last 60 seconds were included in the analysis. This allowed the level of ammonia adsorption onto the catalyst to stabilize at each setting.

5.3 TEST RESULTS

The results of the chemilumenescent NOx measurements and the NOx+ammonia measurements made with the NOx sensor are plotted in Figure 10. All results have been corrected to conditions of dry gas with 15% O_2 , to match the District's normal permit conditions. At low rates of urea injection, the NOx concentration goes down linearly as the urea injection rate goes up. In this regime, there is too little ammonia present to react with all of the NOx, so the levels of ammonia slip are low. It is notable that the engine-out exhaust NOx concentrations were substantially higher for these tests that for the earlier testing in Task 4. At 750 kW, the NOx concentration was around 80 ppmvd, compared to around 40-45 ppmvd in the earlier testing. At 600 kW, the NOx concentration was about 70 ppmvd, compared to 45-50 ppmvd in Task 4. This difference was not observed at 400 kW, where the NOx concentrations were similar in Task 4 and Task 5.

As Figure 10 shows, both NOx and NOx+ammonia concentrations go down more-or-less linearly as the rate of urea injection increases, until an inflection point is reached. From that point, further increases in urea injection give only small reductions in NOx, but increasing amounts of ammonia slip. The NOx + ammonia plot reaches a minimum near the NOx inflection point, and subsequently increases with the urea injection rate. The minimum NOx and NOx+ammonia concentrations increase with increasing exhaust temperature. The minimum NOx concentration is near zero for temperatures up to 410 C, and about 1.3 ppmvd at 440 C.

The plots in Figure 11 compare the measured values for NOx+ammonia (from the NOx sensor) to the NOx measured by the chemilumenescent analyzer. To allow a more precise comparison, the NOx data were adjusted to be equal to the NOx + ammonia values at zero urea flow.

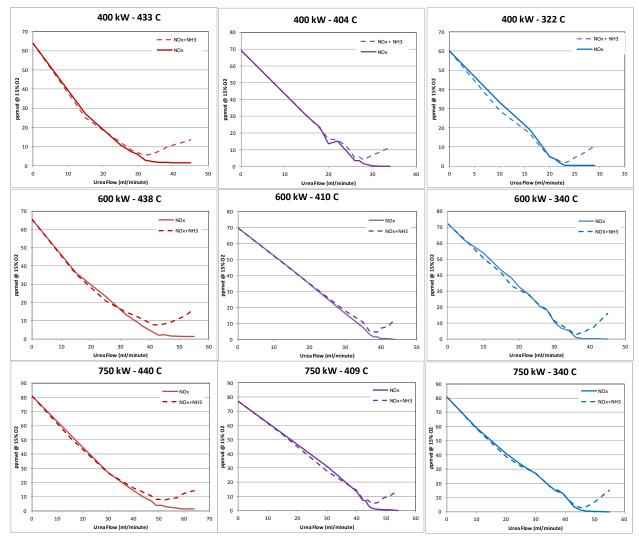


Figure 11: NOx and NOx + ammonia concentrations compared for SCR without slip catalyst

As discussed earlier, EF&EE's existing OptiminTM self-tuning algorithm was designed to adjust the urea injection rate to approximately the minimum in the NOx + ammonia plot. In practice, the actual urea injection rate varies within a band of about +/- 6% around the minimum. This is shown schematically as the gray rectangle in Figure 12. The resulting average NOx values are well within the District's current BACT guidelines, but do not meet the goal of this project except at the lowest temperature.

To achieve even lower NOx emissions, the self-tuning algorithm was modified. Instead of seeking the minimum value of the NOx+ammonia plot, the modified algorithm adjusts the urea injection rate to lie within a range of values to the right of the minimum, but to the left of the point where ammonia emissions would approach the District's limit of 10 ppmvd. This is shown schematically by the blue rectangle in Figure 12. This new algorithm results in higher NOx + ammonia concentrations, on average, but average NOx concentration is much lower.

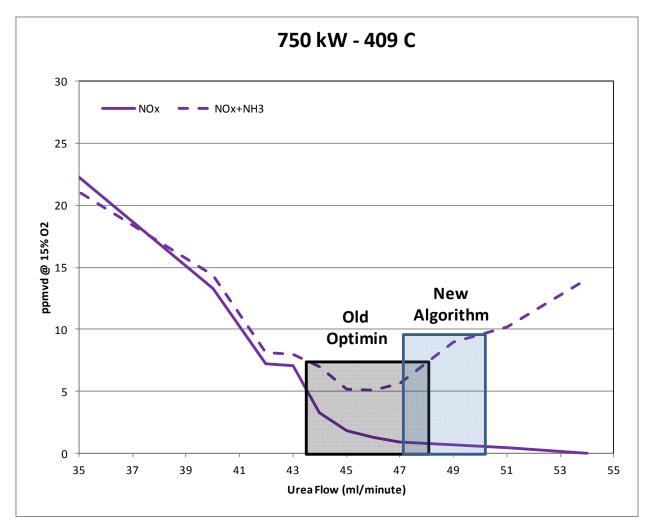
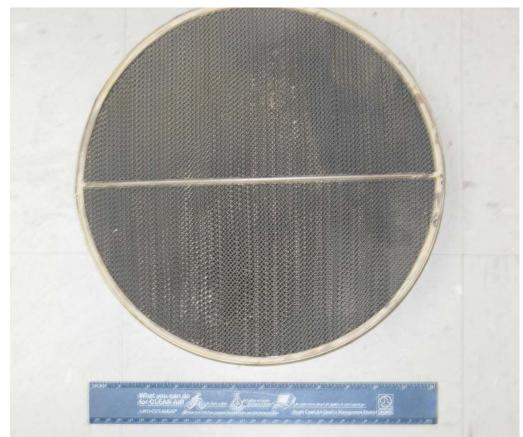


Figure 12: Range of urea injection rates for the old Optimin vs. new self-tuning algorithm

From the data shown in Figure 11, the new algorithm is feasible up to an exhaust temperature of 433 C at 400 kW output, and to 410 C at 750 kW. At the highest temperature and at high power output, there is too little room between the minimum NOx + ammonia value and 10 ppmvd for this algorithm to be workable.


The new algorithm was tested for several days to confirm that it gave stable results. The Task 6 source testing was then conducted with the modified self-tuning algorithm active, and with the exhaust bypass valve adjusted to give 404 C at the outlet of the SCR catalyst. This testing was carried out by Best Environmental, and completed on April 17. At that time, the new SCR catalyst modules had accumulated about 900 operating hours.

With the new catalyst and self-tuning algorithm, the source testing showed average NOx emissions of 0.69 ppmvd, or 0.021 lb/hr, with mean ammonia emissions of 3.03 ppmvd. At 0.75 MW(e) output, this gives 0.028 pounds of NOx per megawatt-hour, which is comfortably less than the project goal of 0.07 lb/MWH. It should be noted that this lb/MWH value is calculated with respect to the <u>electrical</u> output alone. For this cogeneration system, ARB rules allow the calculation to be made against the sum of electrical and useful thermal output. That would result in a value less than 0.02 lb/MWH.

The source test results showed CO emissions of 123 ppmvd, barely meeting the permit requirement for this pollutant. In the absence of the platinum end-coat, the SCR catalyst does not promote the oxidation of CO. The catalyst does promote the oxidation of VOC to CO, however, so that the exhaust CO concentration typically increases slightly in going through the catalyst. To assure adequate compliance margin, a separate CO oxidation catalyst is needed upstream of the urea injection point.

Figure 13 shows a CO oxidation catalyst suitable for this application. The round catalyst element is specified to fit inside the exhaust pipe, thus minimizing installation cost. EF&EE has ordered a similar catalyst element sized for the 14" ID exhaust pipe used in this installation. The estimated retail cost of the oxidation catalyst element is less than \$3,000.

Figure 13: Typical CO oxidation catalyst element

6. CONCLUSIONS AND PLANS FOR FURTHER WORK

The goal of this project was to develop and demonstrate a Compact SCRTM system to allow typical lean-burn, biogas stationary engines to meet the ARB distributed generation standard of 0.07 pounds of NOx per MWH. This goal has been achieved, with actual measured NOx emissions of 0.028 lb/MWH (equivalent to 0.69 ppmvd or 0.009 g/BHP-hr). Ammonia slip was 3.0 ppmvd, which is well below the limit of 10 ppmvd considered BACT.

It should be noted that the achieved value of 0.028 pounds of NOx per MWH was calculated with respect to only the <u>electrical</u> output of the engine-generator. For cogeneration systems, ARB rules allow the calculation to be made against the sum of the electrical and useful thermal outputs. Depending on the cogeneration system design, useful thermal output from a lean-burn engine is typically between 50% and 120% of the electrical output. This would result in NOx emissions between 0.013 and 0.019 lb/MWH.

Two different SCR catalyst types were tested. One type was provided with a platinum coating on the downstream end to control emissions of excess ammonia reductant from the SCR system (ammonia slip). This coating also helped to oxidize carbon monoxide emissions from the engine. The second catalyst type was similar in composition but lacked the platinum coating on the downstream end.

The effects of each catalyst type on NOx and ammonia emissions were determined as functions of exhaust temperature, engine power output, and reductant flow rate. The second catalyst type was found to give better NOx control efficiency, and was the one used to demonstrate compliance with the ARB standard. The platinum slip catalyst on the first catalyst type was found to oxidize ammonia to NOx, resulting in higher minimum NOx levels than for the second type. Only the second type was found capable of meeting the 0.07 lb/MWH NOx standard.

The performance of both SCR catalyst types is affected by exhaust temperature. Minimum NOx levels were similar from 320 to 410 C, but increased significantly at 440 C. The independent source testing was conducted at 405 C. Higher temperatures will result in lower NOx control efficiency and/or higher ammonia emissions. The high temperature limit for meeting the 0.07 lb/MWH standard is probably between 410 and 440 C. Equivalent or improved performance is expected at lower temperatures, down to at least 320 C.

The second catalyst type lacks CO oxidation activity. Thus, to provide adequate compliance margin for that pollutant, a separate, inexpensive CO oxidation catalyst is recommended to be installed upstream of the urea injection point. The added cost of the CO oxidation catalyst is estimated at less than \$3,000.

At the time of testing, the catalyst elements of the second type had accumulated about 740 operating hours. Catalyst efficiency is expected to degrade slowly with increased operating time. Based on experience with the SCR control system at the Fiscalini Dairy, the useful life of the SCR catalyst is estimated to be 30,000 to 40,000 hours before it can no longer maintain the target levels of NOx control. EF&EE plans to perform follow-up measurements at approximately

annual intervals in order to monitor catalyst performance over time. The results of these followup measurements will be submitted to the District as addenda to this report.

In addition to optimizing NOx reduction efficiency, operating the SCR catalyst at the moderate temperature employed here would help to protect the catalyst from degradation due to siloxanes in the fuel. Siloxanes are silicon compounds commonly found as contaminants in biogas from landfills and sewage digesters, and can damage catalytic converters. Siloxanes burn in the engine to form silicon dioxide in the exhaust. At these moderate exhaust temperatures, silicon dioxide is expected to form solid particles, rather than depositing on the catalyst. If so, then this SCR technology should be highly tolerant of siloxane contamination of the fuel. Additional testing is recommended using these catalysts with exhaust streams from internal-combustion engines burning sewage gas or landfill gas in order to assess this possibility.

APPENDIX A: SOURCE TEST REPORT

Joseph Gallo Farms GALLO CATTLE COMPANY Atwater, CA

Emissions Test Report

One 750KW Digester Gas Fired Engine NOx, CO, VOC & NH₃ Emission Results [N-1660-10-0]

> Test Date(s): April 17, 2014 Report Date: May 1, 2014

Performed and Reported by:

BEST ENVIRONMENTAL 339 Stealth Court Livermore, CA 94551 Phone: (925) 455-9474 Fax: (925) 455-9479 Email: bestair@sbcglobal.net

Test Location:

Joseph Gallo Farms-Gallo Cattle Company 10561 W Highway 140 Atwater, CA 95301

Prepared For:

Engine, Fuel and Emissions Engineering, Inc. 8614 Unsworth Avenue, Suite 100 Sacramento, CA 95828 Attn: Mr. Christopher S. Weaver

REVIEW AND CERTIFICATION

Team Leader:

The work performed herein was conducted under my supervision, and I certify that the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program. If this report is submitted for compliance purposes it should only be reproduced in its entirety. If there are any questions concerning this report, please call the Team Leader or Reviewer at (925) 455-9474.

Schad Asfour

Suhail Asfour Project Manager

Reviewer:

I have reviewed this report for presentation and accuracy of content, and hereby certify that to the best of my knowledge the information is complete and correct.

Source Test Manager

ii

TABLE of CONTENTS

SECTIO	N 1.	INTRODUCTION	1
1.1.	TES	T Purpose	
1.2.		T LOCATION	
1.3.		T DATE(S)	
1.4.	POL	LUTANTS TESTED	1
1.5.	SAM	IPLING AND OBSERVING PERSONNEL	1
SECTIO	N 2.	SUMMARY OF RESULTS	2
2.1.	Emi	SSION RESULTS	2
2.2.	Pro	CESS DATA	
2.3.		OWABLE EMISSIONS	
2.4.		CRIPTION OF COLLECTED SAMPLES	
2.5.	Сом	IMENTS: DISCUSSION OF QUALITY ASSURANCE AND ERRORS	2
SECTIO	N 3.	SOURCE OPERATION	3
3.1.	PRO	CESS DESCRIPTION	
3.2.		CK DIAGRAM	
3.3.		CESS AND CONTROL OPERATING PARAMETERS DURING TESTING	
3.4.	TEST	NING OR PROCESS INTERRUPTIONS AND CHANGES	3
SECTIO	N 4.	SAMPLING AND ANALYSIS PROCEDURES	4
4.1.		f Location	
4.2.		IT DESCRIPTION/LABELING – PORTS/STACK	
4.3.	Met	HOD DESCRIPTION, EQUIPMENT, SAMPLING, ANALYSIS AND QA/QC	4
TABLE 1	-NOX	ζ, CO , VOC & NH3 EMISSION RESULTS	7
APPENI	DICE	S	A
	A.	Calculations & Nomenclature	
	л. В.	Laboratory Reports	
	Б. С.		
	С. D.	Field Data Sheets	
		Calibration Gas Certificates	
	E.	Equipment Calibration Records	
	F.	Stack Diagrams	
	G.	Sampling System Diagrams	
	Н.	Source Test Plan	
	I.	Permit to Operate	I-1

iii

1

SECTION 1. INTRODUCTION

1.1. Test Purpose

Best Environmental was contracted by Joseph Gallo Farms to perform NOx, CO, VOC and NH₃ outlet emissions testing on one digester gas fired engines to comply with San Joaquin Valley Air Pollution Control District (SJVAPCD) and the Permit to Operate (PTO # N-1660-10-0). A copy of the permits is included in the appendices.

1.2. Test Location

The testing was conducted on one digester-gas fired I.C. engines located at Gallo Cattle Company, 10561 W Highway 140, Atwater, California 95301.

1.3. Test Date(s)

Testing was conducted on April 17, 2014.

1.4. Pollutants Tested

The following emission parameters were measured:

Parameter	Monitoring & Analytical Protocols
NOx, CO & O ₂	EPA Methods 7E, 10 & 3A
VOC	EPA Method 18
NH ₃	BAAQMD ST-1B
Volumetric Flow Rate	EPA Method 19

1.5. Sampling and Observing Personnel

Sampling was performed by Suhail Asfour and Burt Kusich of BEST ENVIRONMENTAL (BE).

SECTION 2. SUMMARY OF RESULTS

2.1. Emission Results

Parameter	Average	Limits
NH3, ppm @ 15% O2	3.03	10
NOx, ppm @ 15% O ₂	0.69	9
CO, ppm @ 15% O ₂	122.37	123
VOC, ppm @ 15% O ₂	<0.20	48.2

A more extensive summary of the emissions is presented in Table 1 following the text.

2.2. Process Data

The engine was operated at 750KW throughout the test program.

2.3. Allowable Emissions

See Table 2.1 above. The test results show that all emissions are in compliance with the emissions limits shown in the ATC. Although CO exceeded the emission limit for Run 1, the average CO ppm results were with in the SJVAPCD imposed limit.

2.4. Description of Collected Samples

Following testing, all samples are recovered and/or sealed onsite and placed into pre-labeled containers for shipment. The ST-1B impinger samples were recovered onsite following each test run.

A Chain of Custody (COC) was filled out for all samples to ensure proper handling and analysis.

2.5. Comments: Discussion of Quality Assurance and Errors

Quality assurance procedures listed in the above referenced test methods and referenced in the Source Test Plan were performed and documented. The QA/QC procedures are described in Section 4.3 of the report. Documentation of the QA/QC is provided in Appendix A, B, D & E.

Method 19 flow rates were used to calculate the emission rate and factors for all gaseous emissions. VOC is assumed equal to total non-methane non-ethane hydrocarbons.

SECTION 3. SOURCE OPERATION

3.1. Process Description

Joseph Gallo Farms (Gallo Cattle Company) operates an 800 KW Guascor model SFGLD-480 I.C. engine to provide power for the facility. The lean burn engine is exclusively fired on digester gas generated from the facilities cattle farm. The engine is equipped with a selective catalytic reduction system and a heat recovery system used for boiler water pre-heating.

3.2. Stack Diagram

A diagram of the stack is contained in Appendix F.

3.3. Process and Control Operating Parameters During Testing

The 1,152 HP engine was operated normally at 750kW, approximately 94% of rated capacity. Load was determined from the readout on the unit control panel.

The fuel usage for the engine was recorded at 14.6MSCFH from the dedicated fuel meter.

3.4. Testing or Process Interruptions and Changes

There were no process or testing delays on the day of the test.

SECTION 4. SAMPLING AND ANALYSIS PROCEDURES

4.1. Port Location

Emissions from the engines were sampled via two 3.0-inch ports 90° apart from each other 8 stack diameters downstream and 2 stack diameter upstream from the nearest disturbance. The sample ports were accessed on the roof of the engine housing.

The dimensional cross-section of each stack is 14.0 inches (Area SQFT = 1.069).

4.2. Point Description/Labeling – Ports/Stack

A 12-point traverse check was performed during the first run. No stratification was found therefore a single point in the stack was selected on the remaining test run.

4.3. Method Description, Equipment, Sampling, Analysis and QA/QC

Sampling and analytical procedures of the methods were followed as published in the BAAQMD Manual of Procedures, CARB Stationary Source Test Methods Volume I and the EPA "Quality Assurance Handbook for Air Pollution Measurement Systems" Volume III, US EPA 600/4-77-027b.

Parameter	Location	Method(s)	Duration	# of Runs
NO _x , CO & O ₂	Exhaust	EPA Method 7E, 10 & 3A	30 mins	3
VOC	Exhaust	EPA Method 18	30 mins	1
NH ₃	Exhaust	BAAQMD ST-1B	30 mins	3
Flow Rate, DSCFM	Exhaust	EPA Method 19	30 mins	3

The following is an overview of the Testing Performed

EPA Method 1. This method is used to determine the duct or stack area and appropriate traverse points that represent equal areas of the duct for sampling and velocity measurements. The point selection is made based on the type of test (particulate or velocity), the stack diameter and port location distance from flow disturbance.

EPA Method 7E, 10 & 3A are all continuous monitoring techniques using instrumental analyzers. Sampling is performed by extracting exhaust flue gas from the stack, conditioning the sample and analyzing the flue gas using continuous monitoring gas analyzers in a CEM test van. The sampling system consists of a stainless steel sample probe, teflon sample line, glass-fiber particulate filter, glass moisture-knockout condensers in ice, teflon sample transfer tubing, diaphragm pump and a stainless steel/teflon manifold and flow control/delivery system. A constant sample and calibration gas supply pressure of 5 PSI was provided to each analyzer to avoid pressure variable response differences. The entire sampling system was leak checked prior to and at the end of the sampling program. The BE sampling and analytical system was checked for linearity with zero, mid and high level span calibration gases, and was checked for system bias at the beginning of the test day. System bias was determined by pulling calibration gas, which most closely matches the stack gas effluent. The calibration gases were selected to fall approximately within the following instrument ranges; 80 to 100 percent for the high calibration, 40 to 60 percent for the mid range and zero. Zero and calibration drift values were determined for each test.

EPA Method 7E, 10 & 3A met the following criteria:

System Criteria

Instrument Linearity	± 2% Calibration Span or 0.5 difference
Instrument Bias	\pm 5% Calibration Span or 0.5 difference
Calibration Gas	$\pm 2\%$ Value
NO ₂ converter efficiency	>90%
Test Criteria Instrument Zero Drift Instrument Span Drift	± 3% Calibration Span or 0.5 difference ± 3% Calibration Span or 0.5 difference

The following continuous monitoring analyzers were used:

Parameter Parameter	Make	<u>Model</u>	Principle
O ₂	CAI	110P	Paramagnetic
NO _x	TECO	42C	Chemiluminescence
CO	TECO	48C	GFC IR analyzer

All BE calibration gases are EPA Protocol # 1. The analyzer data recording system consists of BE's Data Acquisition System (DAS).

EPA Method 18 is used to determine carbon speciated hydrocarbons (C_1 , C_2 & C_3 +) emissions by gas chromatograph / Flame Ionization Detection (GC/FID). Gaseous emissions are drawn through a Teflon sample line to a tedlar bag located in a rigid leak proof bag container. Sample is drawn into the bag by evacuating the container to stack gas pressure to allow sample flow without using a pump to avoid contamination. Negative pressure is adjusted to maintain an integrated sample flow between 20 to 60 minutes. The bag samples are taken to a laboratory and analyzed within 72 hours. The results are reported as methane with a detection limit of 0.5 ppm for non-methane non-ethane organic compounds (C_3 +).

Ammonia by BAAQMD Method ST-1B. This method was used to determine the ammonia content in the gas stream by extracting a sample via a Teflon® or stainless steel probe and condensing/adsorbing the ammonia in two Greenburg-Smith impingers containing 200ml of 0.1N HCl, followed by an empty knock-out impinger and a fourth impinger containing 200g of preweighed silica gel. The moisture gained is determined volumetrically and gravimetrically. A minimum of 20 cubic feet of sample is pulled using a leak tight pump and sampling assembly and the volume is measured with a calibrated dry gas meter. Ammonia is determined at the laboratory by analysis using specific Ion Electrode. Results are recorded on the field data sheet. Sampling QA/QC consists of performing sampling system leak checks before and after each test run. Reagent blanks were collected onsite. All the sampling equipment is calibrated according to CARB schedules and documentation is included in the report. Analytical QA/QC consisted of a reagent blank, and laboratory blanks, and duplicates.

EPA Method 19 is used to determine stack gas volumetric flow rates using oxygen based Ffactors. F-factors are ratios of combustion gas volumes generated from heat input. The heating value of the fuel in Btu per cubic foot is determined from the analysis of fuel gas samples using gas chromatography (GC). Dedicated fuel meters monitor total fuel consumption for the source. The total cubic feet per hour of fuel multiplied times the Btu/CF provides million Btu per hour (MMBTU) heat input. The heat input in MMBTU/hr is multiplied by the F-factor (DSCF/MMBTU) and adjusted for the measured oxygen content of the source to determine volumetric flow rate. This procedure is proposed for pollutants whose compliance standards are based on emission rates (lb/day) or emission factors (lb/MMBtu).

TABLE #1 **Joseph Gallo Farms NOx & CO Emission Results** 800KW Biogen (N-1660-10-0) **Normal Load**

TEST	1	2	3	AVERAGE	LIMIT
Test Location	Outlet	Outlet	Outlet		
Test Date	4/17/2014	4/17/2014	4/17/2014		
Test Time	1045-1118	1134-1204	1219-1249		
Standard Temp., °F	60	60	60		
Exhaust Flow Rate, DSCFM	1,621	1,625	1,612	1,620	
Engine kw	750	750	750	750	
Engine, bhp	1,058	1,058	1,058	1,058	
O ₂ , %	5.94	5.87	5.91	5.91	
NH ₃ , ppm	5.80	7.75	9.57	7.71	
NH3, ppm @ 15% O2	2.29	3.04	3.77	3.03	10
NOx, ppm	1.75	1.70	1.82	1.75	
NOx, ppm @ 15% O ₂	0.69	0.67	0.71	0.69	9
NOx, lbs/hr	0.021	0.020	0.021	0.021	
NOx, lbs/day	0.49	0.48	0.51	0.50	
NOx, g/bhp-hr	0.009	0.009	0.009	0.009	
NOx, lbs/MMBtu	0.0029	0.0028	0.0030	0.0029	
CO, ppm	313.59	310.53	308.81	310.98	
CO, ppm @ 15% O ₂	123.68	121.90	121.52	122.37	123
CO, lbs/hr	2.25	2.23	2.20	2.23	
CO, lbs/day	54.03	53.64	52.89	53.52	-
CO, g/bhp-hr	0.96	0.96	0.94	0.96	
CO, lbs/MMBtu	0.3133	0.3088	0.3079	0.3100	
VOC, ppm	< 0.50	< 0.50	< 0.50	< 0.50	
VOC, ppm @ 15% O ₂	<0.20	< 0.20	<0.20	<0.20	48.2
VOC, lbs/hr	< 0.002	< 0.002	< 0.002	< 0.002	
VOC, lbs/day	< 0.05	< 0.05	< 0.05	< 0.05	
VOC, g/bhp-hr	< 0.001	<0.001	< 0.001	< 0.001	
VOC, lbs/MMBtu	< 0.0003	< 0.0003	< 0.0003	< 0.0003	

WHERE:

NOx = Oxides of Nitrogen (MW=46)

CO = Carbon Monoxide (MW=28) \mathbf{O}

$$O_2 = Oxygen$$

ppm = Parts Per Million Concentration

kW-hr = kilowatt hour

BHp-hr = Brake Horsepower hour

DSCFM = Dry Standard Cubic Feet per Minute

lbs/MMBtu = Pounds per Million Btu

Fd = 8710 (EPA F Factor for Natural Gas)

Tstd. = Standard Temp.; $^{\circ}R = ^{\circ}F + 460$ VOC = Total Non-methane non-ethane Hydrocarbons as CH₄ (MW = 16)

CALCULATIONS:

Fd =

 $15\%O_2$ correction = ppm of pollutant $*5.9/(20.9 - \%O_2)$ lbs/MMBtu = Fd * MW * ppm * 2.59E-9 * 20.9 / (20.9 - %O₂) BHp-hr = kW-hr * 1.411

lbs/hr = ppm * DSCFM * MW *60 / 379 x 106 (@ 60°F) g/BHp-hr = lbs/hr * 453.6 / horsepower

APPENDICES

APPENDIX A - CALCULATIONS & NOMENCLATURE APPENDIX B - LABORATORY REPORTS APPENDIX C - FIELD DATA SHEETS APPENDIX D - CALIBRATION GAS CERTIFICATES APPENDIX E - EQUIPMENT CALIBRATION RECORDS APPENDIX F - STACK DIAGRAMS APPENDIX G - SAMPLING SYSTEM DIAGRAMS APPENDIX H - SOURCE TEST PLAN APPENDIX I - PERMIT TO OPERATE

APPENDIX A CALCULATIONS & NOMENCLATURE

Best Environmental

Livermore, CA 925 455-9474

Standard Abbreviations for Reports					
Unit	Abbreviation	Unit	Abbreviation		
billion	G	microgram	μg		
Brake horsepower	bhp	milligram	mg		
Brake horsepower hour	bhp-hr	milliliter	ml		
British Thermal Unit	Btu	million	MM		
capture efficiency	CE	minute	min		
destruction efficiency	DE	Molecular Weight	М		
Dry Standard Cubic Feet	DSCF	nanogram	ng		
Dry Standard Cubic Feet per Minute	DSCFM	Parts per Billion	ppb		
Dry Standard Cubic Meter	DSCM	Parts per Million	ppm		
Dry Standard Cubic Meter per Minute	DSCMM	pennyweight per firkin	pw/fkn		
grains per dry standard cubic foot	gr/DSCF	pounđ	lb		
gram	g	pounds per hour	lbs/hr		
grams per Brake horsepower hour	g/bhp-hr	pounds per million Btu	lbs/MMBtu		
kilowatt	kW	second	sec		
liter	1	Specific Volume, ft ³ /lb-mole	SV		
Megawatts	MW	Thousand	k		
meter	m	watt	W		

Common Conversions / Calculations / Constants

1 gram = 15.432 grains

1 pound = 7000 grains

grams per pound = 453.6

bhp = 1.411 * Engine kW, (where Engine kW = Generator kW output / 0.95) @ 95% efficiency

g/bhp-hr = 453*ppm*(MW / (385E6))* 0.00848 * f-factor * (20.9 / (20.9-O₂)); CARB

g/bhp-hr = lbs/hr * 453.6 / bhp

2.59E-9 = Conversion factor for ppm to lbs/scf; EPA 40CFR60.45

Correction Multiplier for Standard Temperature = $(460 + T_{std}, {}^{\circ}F) / 528$

dscf / MMBTU = 8710 for Natural gas; EPA Method 19

Btu/ft³ = 1040 for Natural Gas; EPA Method 19

lb/hr Part. Emission Rate = 0.00857 * gr/dscf * dscfm; EPA Method 5

lbs/hr = ppm / SV x dscfm x M * 60; CARB Method 100; where SV ≈ 385E⁶ @ 68°F or ≈ 379E⁶ @ 60°F or ≈ 386E⁶ @ 70°F.

Correction to 12% CO₂ = gr/dscf * 12% / stack CO₂%; EPA Method 5

Correction to $3\% O_2 = ppm * 17.9 / (20.9 - stack O_2 \%)$; CARB Method 100

Correction to $15\% O_2 = ppm * 5.9 / (20.9 - stack O_2 \%)$; CARB Method 100

dscfm = Gas Fd * MMBtu/min * 20.9 / (20.9 - stack O₂ %); EPA Method 19

lb/MMBtu = Fd * M * ppm * 2.59E-9 * 20.9 / (20.9 - stack O₂ %); EPA Method 19

Standard Temperatures by District					
EPA	68 °F	NSAPCD - Northern Sonoma	68 °F		
CARB	68 °F	PCAPCD - Placer	68 °F		
BAAQMD - Bay Area	70 °F	SLOCAPCD - San Luis Obispo	60 °F		
SJVUAPCD - San Joaquin	60 °F	SMAQMD - Sacramento	68°F de facto		
SCAQMD - South Coast	60 °F	SCAQMD - Shasta County	68 °F		
MBUAPCD - Monterey Bay	68 °F	YSAPCD - Yolo-Solano	68 °F		
FRAQMD – Feather River	68 °F	AADBAPC – Amador County	68 °F		

Z:\FORMS\FIELD\ABREV.doc05/04/12

CEM BIAS SYSTEM TEST SUMMARY SHEET

Facility:	Joseph Gallo Farms			Date:	4/17/2014	Personnel:	SA/BK
Location:	800KW Biogen (N-1660-10-0)						
	O ₂	CO2	NOx	СО	ТНС	CH₄	Comments
Analyzer	110P		42C	48C			
Range	10		50	500			
Zero Value (low)	0.00		0.00	0.00			Drift Calcs per
Cal Value (mid)	4.49		22.1	250			
Cyl. #	CC83596		CC17028	CC134979			
Cal Value (Hi)	8.43		45.90	428			Calibration Span
Cyl. #	CC200475		CC155626	SA17938			

CALIBRATIC CALIBRATION ERROR CHECK

zero (int)	-0.01	0.00	0.84	
% Linearity	-0.12	0.00	0.20	Limit (±2%) or ±0.5diff.
mid cal (int)	4.50	22.47	248.55	
% Linearity	0.12	0.81	-0.34	Limit (±2%) or ±0.5diff.
high cal (int)	8.49	46.06	426.93	
% Linearity	0.71	0.35	-0.25	Limit (±2%) or ±0.5diff.

	SYSTEM B	IAS & D'EM BIAS & D	PRIFT	······································
Zero (int)	-0.01	0.00	0.84	
Zero (ext)	0.07	0.11	-0.11	
Cal (int)	4.50	22.47	248.55	
Cal (ext)	4.47	22.01	242.44	
Zero (int) 1(f)	0.02	0.14	-0.90	1045-1118
Cal (int) 1(f)	4.44	21.49	240.08	Run 1
Zero % Drift	-0.54	0.07	-0.18	Limit (±3%) or ±0.5diff.
Zero % Bias	0.40	0.31	-0.41	Limit (±5%) or ±0.5diff.
Cal % Drift	-0.34	-1.13	-0.55	Limit (±3%) or ±0.5diff.
Cal % Bias	-0.67	-2.13	-1.98	Limit (±5%) or ±0.5diff.
Average	5.88	1.83	302.75	
Corr. Average	5.94	1.75	313.59	
Zero (int) 2(f)	0.01	0.07	-0.43	1134-1204
Cal (int) 2(f)	4.44	20.92	234.36	Run 2
Zero % Drift	-0.11	-0.16	0.11	Limit (±3%) or ±0.5diff,
Zero % Bias	0.29	0.14	-0.30	Limit (±5%) or ±0.5diff.
Cal % Drift	0.00	-1.24	-1.34	Limit (±3%) or ±0.5diff.
Cal % Bias	-0.67	-3.37	-3.32	Limit (±5%) or ±0.5diff.
Average	5.80	1.72	294.82	
Corr. Average	5.87	1.70	310.53	
Zero (int) 3(f)	0.00	0.07	-0.28	1219-1249
Cal (int) 3(f)	4.43	20.39	238.07	Run 3
Zero % Drift	-0.13	0.01	0.04	Limit (±3%) or ±0.5diff.
Zero % Bias	0.17	0.15	-0.26	Limit (±5%) or ±0.5diff.
Cal % Drift	-0.20	-1.17	0.87	Limit (±3%) or ±0.5diff.
Cal % Bias	-0.87	-4.54	-2.45	Limit (±5%) or ±0.5diff.
Average	5.83	1.76	291.87	
Corr. Average	5.91	1.82	308.81	

SYSTEM BIAS & D'EM BIAS & DRIFT

SYSTEM RESPONSE TIME = 70 sec

System Drift (Limit ± 3%) = 100 * <u>External final cal - External Initial cal</u> Calibration Span

System Bias (Limit ± 5%) = 100 * <u>External cal - Internal cal</u>

Calibration Span

% Linearity (Limit ± 2%) = 100 * <u>Span Value - Internal cal</u> Calibration Span

Corrected Average = [Test Avg. - ((Zi+Zf) / 2)] * Span Gas Value / [((Si+Sf) / 2)-((Zi+Zf) / 2)]

STACK GAS FLOW RATE DETERMINATION -- FUEL USAGE EPA Method 19

Facility:	Joseph Gallo Farms
Unit:	800KW Biogen (N-1660-10-0)
Condition:	Normal Load
Date:	4/17/2014

	1045-1118 Run 1	1134-1204 Run 2	1219-1249 Run3	
# standard cubic feet	275	277	274	_ft ³
# of seconds	60.00	60.00	60.00	seconds
Gas Line Pressure(PSIG)	0.0	0.0	0.0	PSI Gauge
Gas Line Pressure(PSIA)	14.70	14.70	14.70	PSI Absolute
Gross Calorific Value @ 68°F	427.9	427.9	427.9	Btu / ft³
Stack Oxygen	5.94	5.87	5.91	%
Gas Fd-Factor @ 68°F	9862	9862	9862	DSCF/MMBtu
Gas Temperature (°F)	60	60	60	°F
Standard Temperature (°F)	60	60	60	°F
				_
Realtime Fuel Rate (CFM)	275.0	277.0	274.0	CFM
Corrected Fuel Rate (SCFM) @ 68°F	279.2	281.3	278.2	SCFM
Fuel Flowrate (SCFH)	16,754	16,876	16,693	SCFH
Million Btu per minute	0.119	0.120	0.119	MMBtu/min
Heat Input (MMBtu/hour)	7.2	7.2	7.1	MMBtu/Hr

	Stack Gas Flow Rate	1,621	1,625	1,612	DSCFM
--	---------------------	-------	-------	-------	-------

WHERE:

Gas Fd-Factor = Fuel conversion factor (ratio of combustion gas volumes to heat inputs) MMBtu = Milion Btu

CALCULATIONS:

SCFM = CFM * 528 * (gas line PSIA) / 14.7 / (gas °F + 460) MMBtu/min = (SCFM * Btu/ft³) / 1,000,000 DSCFM = Gas Fd-Factor * MMBtu/min * 20.9/ (20.9 - stack oxygen%) SCFH = SCFM * 60 Heat Input = MMBtu/min * 60

STACK AMMONIA DETERMINATION BAAQMD METHOD ST-1B

Facility: Unit:	Joseph Gallo Farms					
Condition:	800KW Biogen (N-1660-10-0) Normal Load		NH_3	$\rm NH_3$	NH3	
Date:	4/17/14	Run: Time:	1 1045-1115	2 1134-1204	3 1219-1249	
1. Uncorrect	ed Meter Volume (Vm)		16.680	21.067	17.829	ft ³
2. Meter Fac	tor (Yd)		0.9969	0.9969	0.9969	_
3. Barometri	c Pressure (Pb)		29.90	29.90	29.90	"Hg
4. Meter Pre	ssure (ΔH)		0.00	0.00	0.00	"H ₂ O
5. Meter Ten	nperature (Tm)		81.75	82.17	84.33	°F
6. Std. Temp	erature (Tstd)		60	60	60	°F
7. Impinger I	H ₂ 0 Gain (Vw imp)		36.0	38.0	38.0	g
8. Silica Gel	Wt. Gain (Vw sg)		5.0	6.0	5.0	g
9. Total H ₂ O	Gain (Vw)		41.0	44.0	43.0	g
10. Moisture	Vapor (Vw std)		1.903	2.042	1.995	SCF

Ammonia, mg/sample
Std. Meter Volume (Vm std)
Ammonia, ppm
Percent of H ₂ O in Stack

WHERE:

 ft^3 = Cubic Feet H₂O = Water Hg = Mercury °F = Fahrenheit ml = milliliters g = grams % = Percent

1.88	3.17	3.30	
15.950	20.129	16.968	DSCF
5.80	7.75	9.57	
10.7	9.2	10.5	%

CALCULATIONS:

 $Vw \ std = 0.00267 * Vw * (Tstd + 460) / 29.92$ Vm std = Vm * Yd * (Tstd+460) * (Pb+(Δ H/13.6)) / (Tm+460) / 29.92 Ammonia ppm = 1.6085 * (mg / Vm std) * (Tstd + 460) / 17 Stack Moisture H₂O % = 100 * Vw std / (Vw std + Vm std)

APPENDIX B LABORATORY REPORTS

B-1

CHIPS Environmental Consultants; Inc.

10815 Foothill Avenue Gilroy, CA 95020

(408) 847-8850 FAX (408) 847-8853

Best Environmental 339 Stealth Court Livermore, CA 94550 D88 2807A.rtf page 1 of 1

4-1-14

ATTN: Bobby Asfour (925) 455-9474, <u>bestair@sbcglobal.net</u> RE: Gas Bag Analysis EPA Method 18, **JGF Engine #3, 3-28-14**

Engineering Test

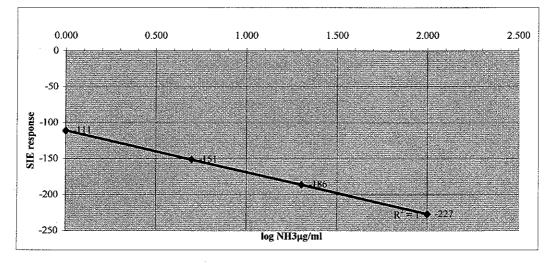
SampleRun 1 Exhaust_Gas<u>Time:</u>1330, All values Calculated as MethaneMethane:522PPMvC-2:21,3PPMvC-3+:ND

ND: Less than 0.5 PPMv

Analysis: HP 5890A Gas Chromatograph w/FID detection. Component separation on a six foot glass column of SP-1000 on Carbopak. Temperature programming was employed. Chromatographic data was recorded on an HP 3393A reporting integrator. Methane in Nitrogen and C2 to C6 n-alkanes in Nitrogen standards.

Sincerely,

Mark Chips Laboratory Director for Chips Environmental Consultants, Inc.


B-3

AMMONIA by Specific Ion Electrode (SIE)

Facility:	JGF
Location:	Engine #3 Outlet
Sample Date:	4/17/2014
Analysis Date:	4/18/2014

Request by:	R. Best/ S. Asfour
Analysts:	R. Mariano Manan
Signature:	0.0000

SIE	NH3	
millivolts	µg/ml	
(y)	(X)	log (x)
-111	1.0	0.000
-151	5.0	0.699
-186	20.0	1.301
-227	100.0	2.000
Slope (m)		-58.011
Y Intercept (l)	-110.739

Sample µg/ml = 10^([SIE-Intercept]/Slope)

Total mg/sample = (Sample µg/ml-Blank µg/ml)/1000*Total sample volume*Dilution

RUN	Total sample ml	Dilution	(y) SIE - millivolts	Temp. (F)	(x) Sample µg/ml	Total mg/sample
Run 1	236	1	-163	68	7.96	1.88
Run 2	238	1	-176	68	13.33	3.17
Run 3	238	1	-177	68	13.87	3.30
Blank	100	1	1	68	0.01	0.00

ã	Best Environmental	ental						Ph (075) 155-0474 E-2075 175 0470	0100 326 1200
	Project ID: Analvical L	Project ID: J G F /Engine #3 Outlet Analvical Lab: Best Environmental	ae #3 Outlet Jironmental	SAMPLE CHAIN OF CUSTODY	IN OF CU	STODY	BE PROJECT MANAGER: SA	ANAGER: SA	
#		TIME	SAMPLE ID Run#/Method/Fraction/Source	CONTAINER size / tune	Values	Storage Temn of	SAMPLE DESCRIPTION	ANALYSIS	TAT
	1 4/17/2014	10:45	RUN 1 M ST-1B/B.H. IMP.	500ML/ HDPE		_	0.1N HCL	AMMONIA	NOPMAT
-	2 4/17/2014	11:34	RUN 2 M ST-1B / B.H. IMP.	500ML/ HDPE			0.1N HCL	AMMONIA	NORMAL
	3 4/17/2014	12:19	RUN 3 M ST-IB/B.H. IMP.	500ML/HDPE	1		0.1N HCL	AMMONIA	NORMAL
	5 4/17/2014		BLANK HCL	500ML/HDPE			0.1N HCL	AMMONIA 🖇	NORMAL
	0 F								
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
	6								
10									
11									
12	5								
13	3								
14	4								
15	~								
16	2								
17									
18	~								
19									
20						*		-	
21									
ar S	ECIAL INST	<b>FRUCTIONS</b>	SPECIAL INSTRUCTIONS: Record & Report all liquid sample volumes.						
									-
S	Submit Results to: Attn:	fo: Attn: /			BEST	ENVIRON	ALTH COUR	LIVERMORE CA 94551	
	Relinquished	Relinquished by: Supd	L/18/11/ 1	(Manam	m		7-/8-14 Time:	V:SS AND	
	Keimquisnea by:		Received by:						
	Relinquished by:	by:	Received by:	-			Date: Time:	[	
	SAMPLE CO	I SV NOLLION VS I	SAMPLE CONDITION AS RECEIVED: OK or not OK						
E									

Vizena-w2ktusers1reports1sa1coclbaaqmd st-16,xls ~ 8/6/2012

B-5

# APPENDIX C FIELD DATA SHEETS

### Livermore, CA (925) 455-9474

Facility:	<u>G-F</u>			Date: 4-	17-14	Personnel:	SAIBK
Location:	Ehg						
	0,	CO ₂	NOx	Со	тнс	SO ₂	Comments
Analyzer	TIOP		42C	420	Inc	302	Comments
Range	176		145	500			
Zero Value (N ₂ )	6		$\overline{0}$				· /···································
Cyl. #	64174474	~					
Cal Value (mid)	4.49		221	250			
Cyl. #	6283596		(C17025		79		
Exp. Date	11-01-21		1-21-17	5-3-10			· · · · · · · · · · · · · · · · · · ·
Cal Value (Hi)	8.43		45.9	428		1	Calibration Span
Cyl.#	K200475		CC15562		38		Canoration opan
Exp. Date	7-11-2:1		1-17-14	and the second se	G I		· · · · · · · · · · · · · · · · · · ·
	······································						
	<del> </del>		CALIBR	ATION ERRO	R CHECK	· · · · · · · · · · · · · · · · · · ·	
Lero (int)	<u> </u>	s.T		0.84			
bs. Difference	0.01			0.84			
6 Linearity	0.12	<u>a stang an</u>	0	0.20			(< or = 2%) or (< or = .5diff.)
nid cal (int)	4.50	1	22.47	248.55			set at mid
bs. Difference	0.01		037	1:451			
6 Linearity	0.12		0.81	0.34			(< or = 2%) or (< or = ,5diff.)
igh cal (int)	8.49		46.96	126.93	<u> </u>		$\frac{1}{2} = -\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=$
bs. Difference	0.66		0.16	1.07		<u></u>	
Linearity	0.7		0.35	0.25			(< or = 2%) or (< or = .5diff.)
	/		Initial S	YSTEM BIAS	Check		
ero (int)	-0.01		0	0.84	I		
ero (ext)	0.07		0.11	-0.1			
bs. Difference	800		0.11	0.95			ter and the second s
as, % range	0.95		0.24	022			(< or = 5%) or (< or = .5diff.)
al (int)	4501		22.47	248.55			in the second
ul (ext)	447		22.01	242.44			
os. Difference	0.03		0.46	611			· · · · · · · · · · · · · · · · · · ·
as, % range	0.36		1.00	1.42			(< or = 5%) or (< or = .5diff.)
STEM RESPON	SE TIME (secs)	- time from a	ext. zero to exi	t. cal. or ext. ca	to ext. zero (	95% response	- (*

76 76

 $NO_{2} CONVERTER TEST$   $NO_{2} Calvalue = \frac{7}{72} Final Value = \frac{3}{8} \frac{6}{6} \frac{6}{6} Efficiency = \frac{72}{52} Cyl \# = \frac{6}{5} \frac{5}{29} \frac{5}{5}$ 

System Calibration Bias = 100 * <u>External cal - Internal cal</u> Calibration Span

% Linearity = 100 * <u>Span Value - Internal cal</u> Calibration Span

% Converter Efficiency (Limit 90%) = 100 * <u>Internal cal</u> Cal Value

## DAS CONTINUOUS EMISSIONS MONITORING DATA SHEET

Facility: Joseph Gallo Farms	Run #:	CEC	Date:	04/17/14
Location: 800KW Biogen (N-1660-10-0)	<b>Barometric:</b>	29.90	Leak ✓ :	ОК
Observers:	Personnel:	SA/BK	Strat. ✓ :	ОК
Expected Run Time = 30 min	Std. Temp:	60		
Cylinder #s:				

Analyte	02	CO2	NOx	CO	THC	SO2			
Analyzer	110P	702D	42C	48C	]				
Range	10		50	500	1				
Span Value	4.49		22.10	250.00					
Time								 Comments:	
9:54	-0.01		0.02	0.86					
9:55	-0.01		0.00		Zero O2,	NOx &	CO	Unit #	
9:56	-0.01		0.01	0.61					
9:57	-0.01		0.00	0.52					
9:58	-0.01		0.00	0.54				Operating Conditions	
9:59	3.49		2.02	117.30					
10:00	4.49		13.43	245.18					
10:01	4.50		21.07	248.58				Fuel	
10:02	4.50		23.65		Mid O2 &	& CO			
10:03	4.50		22.67	248.51					
10:04	7.05		22.47		Mid NOx				
10:05	8.49		22.43	426.29					
10:06	8.49	1.1	22.47	426.93	High O2	& CO			
10:07	8.49		29.51	426.67					
10:08	7.42		42.05	426.72					
10:09	0.03		45.92	131.57					
10:10	-0.01		46.05	30.27					
10:11	-0.01		46.09	11.30					
10:12	-0.01		46.02	-0.18					
10:13	-0.01		46.06		High NO	x			
10:14	-0.01		13.52	-0.03					
10:15	-0.01		1.53	0.07					
10:16	-0.01		2.29	0.35					
10:17	-0.01		3.33	0.16					
10:18	-0.01		3.49	0,19,					
10:19	-0.01		3.70	0.07					
10:20	-0.01		3.85	0.32					
10:21	-0.02		3.86	0.17					
10:22	-0.01		3.86		NO2				
10:23	1.59		0.06	5.29			1		

Corrected Average = [Test Avg. - ((Zi+Zf)/2)] * Span Gas Value / [((Si+Sf)/2)-((Zi+Zf)/2)]Zero Drift % = 100 * (Zf - Zi)/Intrument Range Span Drift % = 100 * (Sf - Si)/Instrument Range

Livermore, CA (925) 455-9474

# DAS CONTINUOUS EMISSIONS MONITORING DATA SHEET

Facility:	Joseph Gallo Farms	Run #:	1	Date:	04/17/14	
Location:	800KW Biogen (N-1660-10-0)	<b>Barometric:</b>	29.90	Leak 🖌 :	ОК	•
<b>Observers:</b>	·······	Personnel:	SA/BK	Strat. ✓ :	ОК	•
Expected R	un Time = 30 min	Std. Temp:	60	····		
Cylinder #s		· · · · · · · · ·		 		

Analyte		O2	CO2	NOx	CO	THC	SO2	[		
Analyzer		110P	702D	42C	48C					· · · · · · · · · · · · · · · · · · ·
Range		10		50	500					
Span Value		4.49		22.10	250.00					
	Time									Comments:
[	10:45	5.93		1.91	304.00					
	10:46	5.93		1.98	303.92					Unit#
	10:47	5.93		2.21	303.97					
	10:48	5.92		1.97	304.39					
	10:49	5.90		1.84	304.86					Operating Conditions
	10:50	5.92		1.96	304.46					
	10:51	5.92		2.13	304.04					
	10:52	5.94		2.36	303.69					Fuel
	10:53	5.89		1.93	303.98					
0.00	10:54	5.92		2.09	304.04					
	10:55	5.92		2.07	303.99					
	10:56	5.91		1.96	303.60					
	10:57	5.92		1.76	303.32					· · · · · · · · · · · · · · · · · · ·
	10:58	5.89		1.68	303.75			NO		· · · · · · · · · · · · · · · · · · ·
	10:59	5.87		1.94	303.60		02	NOx	CO	
	11:00						1.12	1.95		Port Change
	11:01	5.01		1.07	200.27		7.27	1.49	241.62	
· .	11:02	5.91		1.87	299.37					
	11:03	5.88		1.93	302.44					
	11:04 11:05	5.86 5.87		1.84 1.78	302.12					
	11:05	5.87		1.78	302.37					
	11:00	5.85		1.79	302.06					
	11:07	5.85		1.71	302.77					
	11:08	5.85		1.83	301.69					
	11:10	5.84		1.85	301.09					·····
	11:10	5.86		1.78	301.41					
	11:12	5.86		1.58	301.37		· · · ·			
	11:12	5.84		1.52	301.50			+		
	11:15	5.83		1.55	301.26					
	11:14	5.84		1.55	301.30		<del> </del> -			
	11:15	5.86		1.59	301.09			<u> </u>		
	11:17	5.84		1.54	301.33					
ZERO I	10:35	0.07		0.11	-0.11					
SPAN I	10:37	4.47		22.01	242.44					
Ave		5.88		1.83	302.75					
ZERO f	11:27	0.02		0.14	-0.90					
SPAN f	11:25	4.44		21.49	240.08					
Zero Drift		-0.5%		0.1%	-0.2%					
Span Drift		-0.3%		-1.0%	-0.5%					
Corr.		5.94		1.75	313.59	_				

Corrected Average = [Test Avg. - ((Zi+Zf) / 2)] * Span Gas Value / [((Si+Sf) / 2)-((Zi+Zf) / 2)] Zero Drift % = 100 * (Zf - Zi)/Intrument Range Span Drift % = 100 * (Sf - Si)/Instrument Range

# DAS CONTINUOUS EMISSIONS MONITORING DATA SHEET

Facility: Joseph Gallo Farms	Run #:	2	Date:	04/17/14
Location: 800KW Biogen (N-1660-10-0)	<b>Barometric:</b>	29.90	Leak ✓ :	ОК
Observers:	Personnel:	SA/BK	Strat. ✓ :	ОК
Expected Run Time = 30 min	Std. Temp:	60		
Cylinder #s:				

Analyte		<b>O2</b>	CO2	NOx	CO	THC	SO2		ſ	
Analyzer		110P	702D	42C	48C					
Range		10		50	500					
Span Value		4.49		22.10	250.00					
	Time								····	Comments:
	11:34	5.84		1.67	297.35					
	11:35	5.83		1.69	296.72					Unit #
	11:36	5.83		1.74	296.47					
	11:37	5.82		1.79	296.08					
	11:38	5.81		1.71	295.70					Operating Conditions
	11:39	5.81		1.76	296.33					
	11:40	5.82		1.63	295.90					
	11:41	5.80		1.64	295.64					Fuel
	11:42	5.77		1.76	295.60					
	11:43	5.80		1.79	295.17					
	11:44	5.80		1.78	295.32					
	11:45	5.79		1.81	296.47					
	11:46	5.80		1.85	295.16					
	11:47	5.79		1.64	294.56					
	11:48	5.82		1.56	294.41			·	14 	
	11:49	5.82		1.47	293.37					
	11:50	5.79		1.48	294.18					
	11:51	5.80		1.65	294.76					
	11:52	5.80		1.72	295.54					
	11:53	5.84		1.89	294.16					
	11:54	5.83		1.59	293.56					
	11:55	5.78		1.81	292.83					
	11:56	5.75		1.93	293.44					
	11:57	5.76		2.00	293.87					
	11:58	5.79		1.89	294.83					-
	11:59	5.80		1.75	294.20					· · · · · · · · · · · · · · · · · · ·
	12:00	5.82		1.71	293.87					
	12:01	5.80		1.62	292.95					
The second s	12:02	5.79		1.65	292.93					
	12:03	5.80		1.66	293.16					
ZERO I	11:27	0.02		0.14	-0.90					
SPAN I	11:25	4.44		21.49	240.08					· · · · · ·
	rage	5.80		1.72	294.82					
ZERO f	12:12	0.01		0.1	-0.4					
SPAN f	12:14	4.44		20.9	234.4					
Zero Drift		-0.1%		-0.1%	0.1%					
Span Drift		0.0%		-1.1%	-1.1%					
Corr	. Avg.	5.87		1.70	310.53					

Corrected Average = [Test Avg. - ((Zi+Zf)/2)] * Span Gas Value / [((Si+Sf)/2)-((Zi+Zf)/2)] Zero Drift % = 100 * (Zf - Zi)/Intrument Range Span Drift % = 100 * (Sf - Si)/Instrument Range

Livermore, CA (925) 455-9474

# DAS CONTINUOUS EMISSIONS MONITORING DATA SHEET

Facility: Joseph Gallo Farms	Run #:	3	Date:	04/17/14
Location: 800KW Biogen (N-1660-10-0)	<b>Barometric:</b>	29.90	Leak 🗸 :	ОК
Observers:	Personnel:	SA/BK	Strat.♥ :	ОК
Expected Run Time = 30 min	Std. Temp:	60		
Cylinder #s:				

Analyte		02	CO2	NOx	СО	THC	SO2	]		
Analyzer		110P	702D	42C	48C					
Range		10		50	500			1		
Span Value		4.49		22.10	250.00					
	Time									Comments:
	12:19	5.84		1.69	292.76					
	12:20	5.83		1.72	292.43					Unit #
	12:21	5.87		1.81	293.14			1		
	12:22	5.84		1.69	292.80					
	12:23	5.84		1.69	292.80					Operating Conditions
	12:24	5.86		1.74	292.07					
	12:25	5.82		1.69	292.55					
	12:26	5.80		1.79	292.60					Fuel
	12:27	5.81		1.88	292.59					
	12:28	5.82		1.85	292.22					
	12:29	5.83		1.81	291.83					
	12:30	5.83		1.89	292.24					
	12:31	5.82		1.86	291.94					
	12:32	5.81		2.09	292.49					
	12:33	5.82		2.01	292.04					
	12:34	5.84		1.95	292.17					
	12:35	5.85		1.85	291.54					
	12:36	5.84		1.59	290.99					
	12:37	5.84		1.61	291.94					
	6443	5.84		1.70	291.22					
	12:39	5.84		1.75	291.35					
	12:40	5.84		1.74	291.84					
	12:41	5.83		1.67	290.96					
	12:42	5.83		1.76	291.76					
	12:43	5.85		1.81	290.98					
	12:44	5.82		1.66	291.42				1	
	12:45	5.83		1.67	291.49					
	12:46	5.83		1.63	291.54					
	12:47	5.83		1.62	290.92					
	12:48	5.83		1.58	289.36					
ZERO I	12:12	0.01		0.1	-0.4					
SPAN I	12:14	4.44		20.9	234.4					
	rage	5.83		1.76	291.87					
ZERO f	12:59	0.00		0.07	-0.28					
SPAN f	12:58	4.43		20.39	238.07					
Zero Drift		-0.1%		0.0%	0.0%					
Span Drift		-0.2%		-1.1%	0.7%					
Corr.	Avg.	5.91		1.82	308.81				<u> </u>	

Corrected Average = [Test Avg. - ((Zi+Zf)/2)] * Span Gas Value / [((Si+Sf)/2)-((Zi+Zf)/2)]Zero Drift % = 100 * (Zf - Zi)/Intrument Range

Span Drift % = 100 * (Sf - Si)/Instrument Range

		•			
DATE: 4	17-14	FACILITY: ) G	C	UNIT: H3	Out the state of t
DATE: 1			Γ		Serial No. :
	Check or Record				
UNITS	Data	PROCEDURE			
L		Leak Check CEM sys	tem (set sample to 6 PSI	then close off all but	one rotameter and watch drop to zero)
					CARB 1) & mark the CEM Probe
		All zero's and cals m	st show straight line for i	reasonable length of t	time (i.e., 3-5 mins)
		Now is a good time to	do your NO2 converter of	check	
		Linearity Check - set	internal zero (Ca) and cal	gas (Ca) closest to st	ack gas, then check other cal gas
					s - no analyzer adjustments allowed
secs	70		Check (time from ext zero		
Time					erse points for 1 min + RT
	10.72	Record	Barometric Pressure	ch moment an erav	
"Hg 🗠	21,90			· · · · · · · · · · · · · · · · · · ·	
VOLTS	{↓	Record	Supply Voltage to the		· ·
°F	276	Record	Heated Line Temp >24		
°F	49	Record	Knock-Out exit Temp <	<60°F or 20°F less the	in ambient
°F	L 'XD	Record	Ambient Temp (Ta)	· ·	
°F		Record	Stack Temp (Ts)	15	COL KYM
°F		Record	Windbox Temp (Tw)		
NO		Record		of NOx must show Conver	ter Efficiency performed once per month)
secs/ cf	275 SCFA	The second se	Fuel meter - seconds/re		
PSI A or G		Record	Fuel Pressure		-1. 7
°F		Record		/>€	×FW
	111.0		Fuel Temp		· · · · · · · · · · · · · · · · · · ·
	11.18	End Kun	#1 ≥30 min		
	1. 1	· · · · · · · · · · · · · · · · · · ·	Perform Ext zero & cal	(Cfb) - make no analy	zer adjustments
			Determine Drift & Bias		÷
			If < 3 or 5%	can start Run #2	
			If > 3 or 5%	must re-do Linearity	& Bias
					5% then re-do Linearity & Bias
Time	717241	Start Run #2 30 or 4	) min + RT if no stratifi		
VOLTS		Record	Supply Voltage to the V		
			Heated Line Temp >248		
<u>°F</u>	274	Record			
°F	50	Record	Knock-Out exit Temp <	60°F or 20°F less that	n amoient
°F	- 25	Record	Ambient Temp (Ta)		- RPM
°F		Record	Stack Temp (Ts)		1000 / 1
°F		Record	Windbox Temp (Tw)		
secs/cf	2770CH	A Record	Fuel meter - seconds/rev	olution	744 Fill
PSI A or G	<del>~ 17 &gt; 1</del> 1	Record	Fuel Pressure		
°F		Record	Fuel Temp	<u> </u>	
	12:00	End Run #			<u> </u>
	12:04			(th) make no onaly	zor o diugtments
		· · · · · · · · · · · · · · · · · · ·	Perform Ext zero & cal (	(10) - make no analy	zer aufusuments
			Determine Drift & Bias		
3				can start Run #2	
				must re-do Linearity	
					5% then re-do Linearity & Bias
Time	12/19 18	<u>Start Run #3</u> 30 or 40	min + RT if no stratific		
VOLTS		Record	Supply Voltage to the Va		· · · · · · · · · · · · · · · · · · ·
°F	200	S Record	Heated Line Temp >248		
°F			Knock-Out exit Temp <		ambient
	50			TO POLZO PICSS UNAI	
°F	<u> </u>	Record	Ambient Temp (Ta)		1200 KYM
°F		Record	Stack Temp (Ts)		10-11
°F		Record	Windbox Temp (Tw)	- 	-110 to
ecs/cf	274 SCF	M Record	Fuel meter - seconds/rev	olution	177 00
SI A or G			Fuel Pressure		
°F			Fuel Temp	· · · · · · · · · · · · · · · · · · ·	
	12:49	End Run #			
╧╧╼╤╋	16.7-7-		Perform Ext zero & cal (	"fh) - make no analy"	ver adjustments
<u> </u>	· · · · · · · · · · · · · · · · · · ·		Determine Drift & Bias	2107 - marc no analyz	wijustiivitis
	· · · · · · · · · · · · · · · · · · ·	the second se		Dian Bastin	
		Repeat any	Runs that exceed Drift or	BIAS limits	
<u> </u>		ave you done your NO	2 Converter Check??		

# (CARB/EPA Method 4) Moisture Sampling Data Sheet

Facility:	Gallo	Cattle Co
Location:	ostla	-
Date:	4 -17	14
Personnel:	SHERK	

Meter #:	29049
Yd:	.4469
Pyrometer #:	

Pbar: 29.90 % O₂:_____ % CO₂: % H₂O:

Point	Time	Meter Vol,		Temperature, 9	7	Vacuum.
		Fť	Meter In	Meter Out	Imp.	"Hg
l	1645	053.250	80	80	150	6
2	5	(1)55.9	84	86	11	11
3	10	058.6	84	80'	11	6.5
4	15	061.4	84	80	11	11
5	22	064.2	54	80	11	11
6	25	067.1	85	50.	11	11
Ston	37	069.930				······································
	16 45					
TOTAL	/AVG	16.680	81.	45	╺┍┍┍┍┍╍╍╍╼╼╼╼┍╸	<del></del>

Initial Leak Check .005 CFM <u>27</u> "Не Final Leak Check "Hg 002 CFM 15 Initial Final Net 136 Impinger #1: 100 36 Impinger #2: 100 100  $\mathcal{O}$ Impinger #3: Silica Gel: 124 714 Total Net: 41 % Moisture

l	1174	070.223	82	50	450	7
2	5	073.8	84	80	11	U
3	10	077.4	ક્રમ	80	Fl	6
4	115	080.8	<del>ଟ</del> ୍	80	le le	11
ζ	20	084.2	35	\$6	(1	71
6	36	087.7	86	81	11	11
Stop	30	041.290				
	1204					
TOTAL	/AVG	21.087	-8	2.17		·

89

80

86

88

58

**5**8

62

83

82

82

80-

82

84.37

450

Ù

11

ł

]1

7

¥

4

4

27

Initial Leak Check	222	CFM	15 Hg
Final Leak Check	است مرد من زبان	CFM	"Hg
	Initial	Final	Net
Impinger #1:	102	138	38
Impinger #2:	100	100	0
Impinger #3:	· · · · · · · · · · · · · · · · · · ·		
Silica Gel:	724	230	6
	·	Total Net:	42
	%	Moisture	

Initial Leak Check		CFM	"Hg
Final Leak Check		CFM	"Hg
4 •	Initial	Final	Net
Impinger #1:	100	138	38
Impinger #2:	100	(72)	
Impinger #3:			
Silica Gel:	230	535	5
* 	•	Total Net:	43
	%	Moisture	

Com	ments:	

TOTAL/A

3

4

4

Ø

SHP

091321

244.2

087.2

100.2

103.2

106 11

109.150

279

12 18

 $\mathcal{Y}$ 

25

37 2:49

# APPENDIX D CALIBRATION GAS CERTIFICATES



DocNumber: 000060196

Praxair 5700 South Alameda Street Los Angeles, CA 90058 Tel: (323) 585-2154 Fax:(714) 542-6689 PGVPID: F22013

# CERTIFICATIE OF AMAVEYSIS / EPA PROTOCOL

Customer & Order Information:

PRAXAIR WHSE 1930 LOVERIDGE PITTSBURG		Praxair Order Number: 2541648 Customer P. O. Number: 0464922 Customer Reference Number:		10/30/2013 NI CD6.5CO1E-AS 109330308 AS CGA 350
· · · ·		Certified Concentration:	Cylinder Pressure & Volume:	2000 psig 140 cu. ft.
	Expiration Date: Cylinder Number		NIST Traceable Analytical Uncertainty:	
	45.4 8.43	ppm CARBON MONOXIDE % CARBON DIOXIDE	± 1.1 % ± 1 %	
	4.49 I	% OXYGEN Balance NITROGEN	±1%	

Certification Information: Certification Date: 11/4/2013 Term: 96 Months Expiration Date: 11/4/2021 This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Do Not Use this Standard if Pressure is less than 100 PSIG.

[CO] has been corrected for [CO2] interference.

Analytical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Candidate)

1. Č	omponent: CARBON MONOX	IDE .
	Requested Concentration: Certified Concentration: Instrument Used: Analytical Method: Last Multipoint Calibration:	45 ppm 45.4 ppm Horiba VIA-510 <u>S/N 577172043</u> NDIR 10/24/2013
	First Analysis Data:	Date: 11/4/2013

1 14 3	- Fullary of	5 Dai	<i>a</i> .			Date:	11/4/2013	
Z:	0	R:	50.6	C:	45.4	Сопс:	45.4	
R:	50.6	Z:	0	C:	45.3	Conc:	45.3	
Z:	0	C:	45.4	R:	50,6	Conc:	45.4	
UON	f: ppr	1		Mea	n Test /	Assay:	45.367 ppm	

2. Component: CARBON DIOXIDE

Certi Instru Analy	lested Con fied Con ument Us rtical Me Multipoir	central led: thod;	tion:	8. H	8.5 % 8.43 % Horiba VIA-510 S/N 2807014 NDIR 10/24/2013				
Firs	t Anaiys	is Dat	a:			Date:	11/4/2013		
Z:	0	R:	9,96	C:	8.43	Conc:	8.43		
R:	9.96	Z:	0	C:	8.43	Conc:	8.43		
Z:	0	C:	8.43	R:	9.96	Conc:	8.43		
UOM	A: %			Mea	n Test i	8 43 %			

Refere	ince St	andard	Type:		GMIS	GMIS				
Ref. S	td. Cyli	nder#	:		CC27	2592				
Ref. St	td. Con	c:			<b>5</b> 0.6 j	ppm				
Ref. St	td. Trac	eable	to SRM	1#:	1678	C .				
		SRM	Sanip	ê#:	4-1-2	t si goran a				
		SRM (	Cylinde	er#:	XF00	1068B				
Seco	nd Ana	lysis C	Data:			Date:				
Z:	0	R:	0	C:	0	Conc:	0			
R:	0	Z:	0	C:	0	Conc:	0			
Z:	0	C:	0	R:	0	Conc:	0			
UOM:	ppr	n		Mea	ın Test	Assay:	0 ppm			
Ref. St	nce Sta d. Cylir d. Cond	nder#:			GMIS CC20 9,96%	7040				
Ref. Ste	d. Trac	eable t	o SRM	#:	vs. 16	746				
		SRM	Sampl	9#:	7-F-32	2				
		SRM C	ylinde	r#:	CALO	14645				
Secor	nd Ana	lysis D	ata:			Date:				
Z:	0	R:	0	C:	0	Conc:	0			
R:	-	Z:	-	C:	. 0	Conc:	0			
Z:	0	C:	0	R:	0	Conc:	0			
UOM:	%			Mea	n Test	Assay:	0%			

Партика Сарания Praxair 5700 South Alameda Street Los Angeles, CA 90058 Tel: (323) 585-2154 Fax:(714) 542-6689 DocNumber: 000060196 PGVPID: F22013 CIERNAPICAME PROHOCOL GAS ATAXSTS I PA OXYGEN 3. Compo ent: Reference Standard Type GMIS Requested Concentration: 4.5 % Ref. Std. Cylinder # ; CC245878 Certified Concentration: 4.49 % Ref. Std. Conc: 5.02 % Instrument Used: OXYMAT 5E Ref. Std. Traceable to SRM # : 2658a Analytical Method: PARAMAGNETIC SRM Sample # : 72-28-B Last Multipoint Calibration: 10/24/2013 SRM Cylinder # : CLM-006896 First Analysis Data: Date: 11/4/2013 Second Analysis Data: Date: Z: 0 R: 5.02 C: 4.49 Conc: 4.49 Z: 0 R: 0 C: 0 Conc: 0 R: 5.02 Z: 0 C: 4.49 Conc: 4.49 R: 0 Z: C: 0 0 Conc: 0 Z: 0 C: 4.49 R: 5.02 Conc: 4.49 Z: 0 C: 0 R: Ø Conc: ю UOM: % Mean Test Assay: 4.49 % UOM: % Mear say 0% Test A Analyzed by: Certified by: Jacquelyne Rolonda Kaywood



# Praxair

5700 South Alameda Street Los Angeles, CA 90058 Tel: (323) 585-2154 Fax:(714) 542-6689 PGVPID: F22013

DocNumber: 000055940

CA 945510

# CERTIFICATE OF ANALYSIS/EPA PROTOCOL GAS

### Customer & Order Information:

BEST ENVIRONMENTAL SERVICE 339 STEALTH CT LIVERMORE

Praxair Order Number: 24172365 Customer P. O. Number: 8210 Customer Reference Number:

Fill Date: 6 Part Number: N Lot Number: 10 Cylinder Style & Outlet: Α e & Val 2

/26/2013									
I CD12.5CO3EAS									
09317709									
s	CGA 590								
000 psia	140 cu ft								

-		<b>Certified</b> Concentration	•		
Expiration Date	:	7/11/2021	NIST Traceable		
Cylinder Numbe	er:	CC200475	Analytical Uncertainty:		
91.3	ppm	CARBON MONOXIDE	± 0.6 %		
12.3	%	CARBON DIOXIDE	±1%		
8.43	%	OXYGEN	±1%		
	Balance	NITROGEN	•		
		<u></u>			

Certifcation Information: Certification Date: 7/11/2013 Term: 96 Months Expiration Date: 7/11/2021 This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Do Not Use this Standard if Pressure is less than 100 PSIG.

CO response have been corrected for CO2 interference.

(R=Reference Standard, Z=Zero Gas, C=Gas Candidate) Analytical Data:

Req	uested C	oncen	tration:	9	90 ppm				
Cert	ified Con	centra	tion:	9	91.3 ppm				
- Inst	ument Us	ed:		н	Horiba VIA-510, Ş/N 577172043 NDIR 6/25/2013				
Ana	lytical Me	hod:		N					
Last	Multipoin	t Calib	pration:	6/					
Fin	st Analys	is Dat	a:		÷	Date:	7/11/2013		
Fin Z:	st Analys 0	is Dai R:	a: 100.6	C:	91.4	Date: Conc:	7/11/2013 91.4		
				C: C:	91.4 91.3		-		

Mean Test Assay:

91.3 ppm

2. Component: CARBON DIOXIDE

ppm

UOM:

Requested Co Certified Conc Instrument Us Analytical Met Last Multipoin	entration: ed; hod;	12.5 % 12.3 % Horiba VIA NDIR 6/20/2013	-510 S/N	2807014	
First Analys	is Data:		Date:	7/11/2013	
Z; 0	R: 19.71	C: 12.3	Conc:	12.3	
R: 19.71	Z: 0	C: 12.31	Conc:	12.31	
<b>Z:</b> 0	C: 12.32	R: 19.71	Conc:	12.32	:
UOM: %		Mean Test A	12.31 %	•	

		tandard inder # :		GMIS CC141663			
Ref. St					100,6		
		ceable t	o SRM	vs. 16	••		
			Sampl			•	
				r#:			
Secor	nd An	alysis C	ata:			Date:	
Z:	0	R:	0	C:	O	Conc:	0
R:	0	Z:	0	C:	0	Conc:	0
Z:	0	C:	0	R:	0	Conc:	0
UOM:	pp	m		Mea	n Test	Assay:	0 ррл
			·				
eferen ef. Sto ef. Sto	ice Sti I. Cylin I. Con	zeable to	sRM Sample	∎#:	7-F-32	% 74b	
eferen ef. Sto ef. Sto ef. Sto	ice Sti I. Cylii I. Con I. Trac	nder#: c: xeable to SRM {	o SRM Sample ylinder	∎#:	CC74 19.71 vs. 16 7-F-32	% 74b	
eferen ef. Sto ef. Sto ef. Sto	ice Sti I. Cylii I. Con I. Trac	nder # : c: ceable to SRM : SRM C	o SRM Sample ylinder	∎#:	CC74 19.71 vs. 16 7-F-32	% 74b 2 14645	0
eferen ef. Sto ef. Sto ef. Sto Secon Z: R:	ice Sta I. Cylir I. Con I. Trac I. Trac d Ana	nder # : c: seable to SRM S SRM C alysis D	o SRM Sample ylinder ata: 0	a#: #:	CC744 19.71 vs. 16 7-F-32 CAL0 0 0	% 74b 14645 Date:	ō
eferen ef. Sto ef. Sto ef. Sto Secon Z;	ice Sti I. Cylit I. Con I. Trac d Ana 0	nder # : c: xeable to SRM : SRM C SRM C alysis D R:	o SRM Sample ylinder ata: 0	e#: #: C:	CC74 19.71 vs. 16 7-F-32 CAL0	% 745 14645 Date: Conc:	-



**PRAXAIR** 

000055940

DocNumber:

Praxair

5700 South Alameda Street Los Angeles, CA 90058 Tel: (323) 585-2154 Fax: (714) 542 6

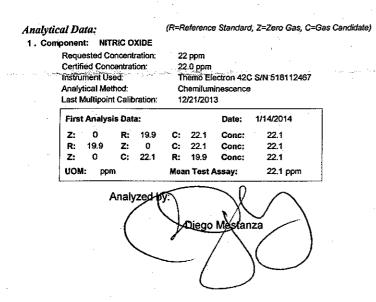
Tel: (323) 585-2154 Fax:(714) 542-6689 PGVPID: F22013



# **PRAXAIR**

Praxair 5700 South Alameda Street Los Angeles, CA 90058 Tel: (323) 585-2154 Fax:(714) 542-6689 PGVPID: F22014

DocNumber: 000062709


# CERTITUTE OF ANALYSIS/JEPA PROTOCOL GAS

Customer & Order Information: 1/9/2014 Fill Date: PRAXAIR WHSE PITTSBURG CA Praxair Order Number: 26050820 NI NO22ME-AS Part Number: 1930 LOVERIDGE RD Customer P. O. Number: 04740690 109400904 Lot Number: Customer Reference Number: PITTSBURG CA 945650 AS CGA 660 Cylinder Style & Outlet: Cylinder Pressure & Volume: 2000 psig 140 cu. ft. **Certified Concentration: NIST Traceable** Expiration Date: 1/21/2017 Analytical Uncertainty: Cylinder Number: CC17028 NITRIC OXIDE ±1% 22.0 ppm NITROGEN Balance

NOx = 22.1 ppm

NOx for Reference Only

Certification Information: Certification Date: 1/21/2014 Term: 36 Months Expiration Date: 1/21/2017 This cylinder was certified according to the 2012 EPA Traceability Protocol Document #EPA-600/R-12/531, using Procedure G1. Do Not Use this Standard if Pressure is less than 100 PSIG.



Reference Standard Type:	GMIS
Ref. Std. Cylinder # :	CC362481
Ref. Std. Conc:	19.9 ppm
Ref. Std. Traceable to SRM # :	2629a
SRM Sample # :	50-G-109
SRM Cylinder # :	FF31631
r	

Sec	ond Ana	lysis l	Data:	Date:	1/21/2014			
Z:	0	R:	19.9	C:	22	Conc:	22	
R:	19.9	Z:	0	C:	21.9	Conc:	21.9	
Z:	0	C:	22	R:	19.9	Conc:	22	
UON	A: 00	'n		Mea	n Test /	Assay:	21.967 ppm	Í

Certified by:





Praxair 5700 South Alameda Street Los Angeles, CA 90058 Tel: (323) 585-2154 Fax:(714) 542-6689 PGVPID: F22014

DocNumber: 000062563

# CERTIFICATIE OF ANALYSTIS / TEPATPROTIOCOL GAS

Customer & Order Information:

mer a oraci mgor	manon.						
PRAXAIR WHSE 1930 LOVERIDG PITTSBURG	E PITTSBURG CA E RD CA 945650	Praxair Order Number: 26050867 Customer P. O. Number: 04740701 Customer Reference Number:		Fill Date: Part Number: Lot Number: Cylinder Style & Outlet:	NI NO45ME-AS 109400610		
			Certified Co	ncentration:	Cylinder Pressure & Volume:	2000 psig	140 cu. ft.
	Expiration Date: Cylinder Number:		1/17/2017 CC155626		NIST Traceable Analytical Uncertainty:		
	45.7 B	••	NITRIC OXIDE NITROGEN	: :	± 0.7 %		
	NOx = 45.9 p	opm			NOx for Reference Only		

Certification Information: Certification Date: 1/17/2014 Term: 36 Months Expiration Date: 1/17/2017 This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Do Not Use this Standard if Pressure is less than 100 PSIG.

Analyti 1. Cor	<i>cal Da</i>		TRIC O	XIDE	(R=F	leferenc	e Standan	d, Z=Zero Gas, C=	Gas Candidate)
1	Certifi Instrut Analyt	ed Con ment U icel Me	icentra sed: sthod:	 13	4 Ti C		ectron 420	C S/N 518112467_	
	First	Analys	sis Dat	a:		11 A.	Date:	1/10/2014	].
	Z:	0	R:	50	C:	45.6	Conc:	45.6	
	R:	50	Z:	0	C:	45.7	Conc:	45.7	
	Ż:	0	C:	45.7	R:	50	Conc:	45.7	
	UOM	pp	m		Mea	n Test /	Assay:	45.667 ppm	



Second Analysis Data:	Date:	1/17/2014
SRM Cylinder # :	CAL015617	1.
SRM Sample # ;	45-U-37	
Ref. Std. Traceable to SRM # :	1683b	
Ref. Std. Conc:	50.0 ppm	
Ref. Std. Cylinder # :	CC362460	
Reference Standard Type:	GMIS	

UOM	i: ppr	n		Mea	n Test /	Assay;	45.7 ppm	
Z:	0	C:	45.6	R:	50	Conc:	45.6	1
R:	50	Z:	0	C:	45.8	Conc:	45.8	
Z:	0	R:	50	C:	45.7	Conc:	45.7	
		-						

Certified by:





000037964

Praxair 5700 South Alameda Street Los Angeles, CA 90058 Telephone: (323) 585-2154 Facsimile: (714) 542-6689

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information:

PRAXAIR WHSE MODESTO CA 420 RIVER RD MODESTO CA 953510

DocNumber:

Praxair Order Number: 20027681 Customer P. O. Number: 03851396 Customer Reference Number: Fill Date: Part Number: Lot Number: Cylinder Style & Outlet: Cylinder Pressure & Volume:

4/19/2012 NECO250E-AS 109211013 AS CGA 350 2000 psig 140 cu. ft.

Certified	Concentration:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0011001111 1010111

NIST Traceable Analytical Uncertain	5/3/2015 CC134979			Expiration Cylinder
v	CARBON MO	ppm Balance	250	

Certification Information: Certification Date: 5/3/2012 Term: 36 Months Expiration Date: 5/3/2015 This cylinder was certified according to the 1997 EPA Traceability Protocol, Document #EPA-600/R-97/121, using Procedure G1

Do Not Use this Standard if Pressure is less than 150 PSIG PGVP I.D.# F22012

Analytical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Candidate)
1. Component: CARBON MONOXIDE

Requested Cancentration: 250

Certi Instru Analy	iested Co fied Conc ument Us /tical Met Multipoin	xentra ed: hod: t Calit	tion: pration:	2 H N	50 ppm 50 ppm Ioriba VI/ IDIR /11/2012		N 577172043	
Firs	t Analys	is Da				Date:	4/25/2012	
Z:	0	R:	253,1	C:	249.5	Conc:	250	
R:	253.1	Z:	0	C:	249.6	Conc:	250	1
Z:	0	C:	249.7	R:	253,1	Conc:	250	ŀ
UON	/: ppn	n		Mea	ın Test A	ssay:	250 ppm	

Analyzed by:

Shameela Jiffrey

Ref. Ref.	rence Sta Std. Cylir Std. Cone Std. Trac	nde <i>r</i> # c: seable SRN	:	#;	GMIS CC272 253.1 (2636a 57-9-C CLM-0	opm	
Sec	ond Ana	lysis	Data:			Date:	5/2/2012
z:	0	R:	253.1	C:	249.4 Conc:	249	
R:	253.1	Z:	0	C:	249.5	Conc:	250
Z:	0	C:	249.6	R;	253.1	Conc:	250
UOI	M: ppr	n		Mea	in Test /	yesay:	250 ppm
		(Certifie	d by		blonda	kaywood

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, hc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The a information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc., arising out of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc., arising out of the information is a sole of the information in the formation is a sole of the information in the formation is a sole of the information.

MAY-22-2013 08:19 From:

DocNumber: 000025243 P.2/4

Praxair 5700 South Alameda Street Los Angeles, CA 90058 Tel:(323)585-2154 Fax:(714)542-6689 PGVP ID: F22011

		n and an and					where the state of	Out 14 and 16 at 1 at 1	a train description	10000	1 mar. 10703-0140	Mellion Charles Tarte Tarte	nternet and the st	- 365
		A Second State											and the State of States State of States	
omer & Ord	er Inform al	ion:												
EST ENVIRÓN	MENTAL SER	VICES *N	VIAN	raxair Order N		948682			• Fill Q		V27/2011			
261 SOUTHER	ONT RD		-	Sustamer PO N	1.35	92			Part Norm Let Norm	. 7		OE160AS		
VERMORE	ĊA 94	5510000	Custom	er Reference N	umper.		~	ylinder Styr			1091 14702 18	7 · CGA 66	20	
			Carti	ified Concer	ntraticus ·			r Pretsure			000 µeig	140 cu.		
				· ·		NIS	T Tracea	bla		٦				
	Expiration			06/17/201			lytical U		itv:					
	Cylinder	Numper		SA17938								•		
		428 p	pm	CARBON	MONOXID	E	±19	6						
		83,6 p	mä	NITRIC O	XIDE		±1%	6						
		8	lalárice	NITROGE	EN									
	NÖx ppm	- 60 6	mag €				X for Refe	stoppa C	and a second	<u> </u>	. •			
	NOX Phil	- 0	2 May 11		•			5101105 0	a a f					
fication Info This cylinder w Do Not Use thi PGVP I.D.# F2	s Standard if P	rèssure la	s less than	150 PSIG.			*22400		£1,440	, ,				
This cylinder w Do Not Use thi PGVP I.D.# F2 <i>ntical Data</i> :	s Standard if P 2011. First and	ressure l Nysis for (R=F	s less than [NO] was d Reference Star	150 PSIG.).Ś ppm GMi	S .								
This cylinder w Do Not Use thi PGVP I.D.# F2 Intical Data: I. Component	s Standard If P 2011. First and CARBON	ressure i Nysis for (R=A Nonoxpe	s less than [NO] was d Rotanocu Stat	150 PSIG. Ione using 99).Ś ppm GMi	S .	Reference	Standard 'f			Gh	415		
This cylinder w Do Not Use thi PGVP I.D.# F2 htical Data: 1. Component: Requested Conce Certified Conce	Standard if P 2011. First and CARBON centration	rèssure i Nysis for Ref Nonoxide 41	s less than [NO] was d Reference Star	150 PSIG. Ione using 99).Ś ppm GMi	S .	Reference Ref. Sta. C Ref. Sta. C	Standard T Mixtor # onc:	Ури:	, ,	GM . CC . 50	115 2115492 8 pppm		
This cylinder w Do Not Use this PGVP 1.D.# F2 Mical Data: 1. Component: Requested Como Gentiled Conce Macument Use	Standard if P 2011. First and CARBON Contration Intesten: 4:	rèssure i liysis for (R=A NONOXIDE 41 42 Hi	s less than [NO] was d Prince Start 1 15 ppm 28 ppm ORIBA, VIA-01	150 PSIG. Ione using 99).Ś ppm GMi	S .	Reference Ref. Sta. C	Standard T Mixtor # onc:	ype: Sirla #:		GN 00 50	415 2115492 8 ppm . 16805		
This cylinder w Do Not Use thi PGVP I.D.# F2 htical Data: 1. Component: Requested Conce Certified Conce	Standard if P 2011. First and CARBON centration https:// centration di	rèssure i liysis for (R=A lironoxide 40 40 Hi N	s less than [NO] was d Robustic Stat 1 15 ppm 28 ppm	150 PSIG. Ione using 99 Iokin, 2-Zero Gel).Ś ppm GMi	S .	Reference Ref. Sta. C Ref. Sta. C	Standard T Mixtor # onc:	ype: SRM #: SRM	Sample	Gk GC 50 va. #: 2-7	115 2115492 8 pppm		
This cylinder w Do Not Use thi PGVP I.D.# F2 nticul Data: 1. Component: Requested Conc Cartilled Conce Instrument Use Analytical Metry Lest Nutsport	Standard if P 2011. First and CARBON contration mitteon di California contration	riessure i liysis for (R=A MONOXUDE 41 42 44 N. 00	s less than [NO] was d Rrinesce Stat 15 ppm 28 ppm ORIBA, VA-91 DR 502/2011 DR	150 PSIG. Ione using 99 Iokid, Z-Zero Get Io 5/5 876 015). 8 ppm GMi 2, C=Øas Canoli	S. date) Sec	Reference Ref. Sta. C Ref. Sta. C Ref. Sta. tr	Standard 'f ylt::Sar#: onc: aceable to aceable to	ype: SRM # SRM C SRM C	Sample ylinder :	GN CC SO ¥: 2-7 #: FF	41S 31 5492 6 ppm - 16805 7-0 -33980 Date:	02/17/2011	
This cylinder w Do Not Use thi PGVP I.D.# F2 hticul Data: 1. Component: Requested Con- Certified Conce harounent Use Analytical Metri- Last Nuttport- Ficel Analysis 2: 0	Standard if P 2011. First and CARBON CARBON Introduction Introduction Introduction Carbonic Int Carbonic Int Carbonic Int Social Carbonic Int Carbonic Carbonic Into Carbonic Into Carbonic Carbonic Into Carbonic Carbonic Carbonic Carbonic Carboni	rèssure i liysis for liR=A MONOXIDE 41 42 43 43 43 43 43 43 43 43 43 44 44 43 43	s less than [NO] was d animescy Stat 15 ppm 28 ppm ORIBA, VA-91 DIR 502/2011 DIR 502/2011 DIR 502/2011	150 PSIG. Ione using 99 Iokid, Z-Zero Get Io 5/5 875 015 Ide: 05/10/201 Inc: 428). 8 ppm GMi 2, C=Øas Canoli	S. date) Sec Z:	References Ref. Sta. C Ref. Sta. C Ref. Sta. tr ond Analysi C	Standard II ylindar W. anc: aceacle to a Data: B3	ype: SRM #: SRM C SRM C \$06	Sample Sylinder : ¢:	GN CC 50 #: 2-7 #: FF 426.4	415 6 ppm - 16505 7-0 	428	
This cylinder w Do Not Use thi PGVP I.D.# F2 ticul Data: 1. Component Requested Con Catilled Conce hearument Use Analytical Metry Lest Muttpoint: Firet Analysis 2: 0 R: 505	Standard if P 2011. First and CARBON contration httecon di calorateur Centrateur Cata: Ri Soc Z: 0	riessure i lysis for (R=A MONOXUDE 41 42 41 43 43 43 43 43 43 43 44 43 44 44 44 44	s less than [NO] was d antenace Stat [55 ppm 28 ppm 28 ppm 29 ppm 29 ppm 29 ppm 20 ppp	150 PSIG. Ione using 99 Ideid, 2-240 Get 10 5/5 876 015 Ide: 05/10/2011 One: 428 one: 428). 8 ppm GMi 2, C=Øas Canoli	S. date) Sec	Reference Ref. Sta. C Ref. Sta. C Ref. Sta. tr	Standard 'f Mindar W cone: aceative to aceative to B B Z:	ype: SRM # SRM C SRM C	Sample ylinder :	GN CC SO ¥: 2-7 #: FF	41S 31 5492 6 ppm - 16805 7-0 -33980 Date:		
This cylinder w Do Not Use this PGVP I.D.# F2 tical Data: 1 - Component Requested Conce instrument Use Analytical Metric Lest Nuttpoint Fired Analysis 2: 0 R: 505	Standard if P 2011. First and CARBON centration introton di calorateur Data: Ri Sol Z: 0 C: 428	rèssure i ilysis for ilysis for illonoxode di di di di di di di di di di di di di	s less than [NO] was d antereace Stan [5 ppm 28 ppm 28 ppm 20 pp	150 PSIG. Ione using 99 Iokin, 2-zero Gai Io 5/5 876 015 Ide: 05/10/201 Ione: 428 Ione: 428	9.8 ppm GMi 8, C=025 Candi 1	5. date) 840 2; R:	References Perf. Stat. C Ref. Stat. C Ref. Stat. tr appd Analysis O 506 0	Standard 'f Mindar W cone: aceative to aceative to B B Z:	ype: SRM #: SRM C SRM C SOS C	Sample Vinder : C: C:	GN GC 50 ¥: 2-7 #: FF 428.4 427.4 505	415 5115492 8 ppm 16800 7-0 	428 427	
This cylinder w Do Not Use thi PGVP I.D.# F2 I. Component: Requested Con- Cartified Conce hearument Use Analytical Metro Last Nutsport: Firet Analysis 27 0 R: S05 Z: 0	S Standard if P 2011. First and CARBON contration intration di Calibration Cal	rèssure i alysis for (R=A MONOXOE 40 40 40 40 40 40 40 40 40 40 40 40 40	s less than [NO] was d Primero v Start 15 ppm 25 ppm ORIBA, VIA-01 DIR 502/2011 2425 425 G 506 C	150 PSIG. Ione using 99 Idein, 2-240 Ga Io 5/5 876 015 Ide: 05/10/2011 One: 428 one: 428	9.8 ppm GMi 8, C=Gas Candi 1	5. date) 847 2; R: 2; 2;	References Ref. Sta. C Ref. Sta. C Ref. Sta. tr DD: Ansiyal C S06 0	Stenderd II ylardar X. onc: aosable lo a Data: R3 Z: C: 4	уре: SRM #: SRM C SRM C 506 C 127.4	Sample Vinder : C: C:	Gh SO Va #: 2-7i #: FF 428,4 427,4 508 Mean T	IIS 2115492 8 ppm 48805 7-3 28985 Date: Conc: Conc: Conc: Conc:	428 427 428	
This cylinder w Do Not Use thi PGVP I.D.# F2 nticul Data: 1 Component: Requested Con Cartilled Conce haroument Use Analytical Metri Lest Nutsport Filed Analysis 2: 0 R: 505 2: 0 UOH: poi 2. Component: Requested Con	Standard if P 2011. First and CARBON centration htteton di 2abreter Ni SCG 2: D C: 429 B NITRIC 03 pertration:	rèssure i alysis for (R=A MONOXOE 40 40 40 40 40 40 40 40 40 40 40 40 40	s less than [NO] was d Primero v Start 15 ppm 25 ppm ORIBA, VIA-01 DIR 502/2011 2425 425 G 506 C	150 PSIG. Ione using 99 Idein, 2-240 Ga Io 5/5 876 015 Ide: 05/10/2011 One: 428 one: 428	9.8 ppm GMi 8, C=Gas Candi 1	5. date) 847 2; R: 2; 2;	References Ref. Sta. C Ref. Sta. C Ref. Sta. tr Phd Analysi O Soc O Reference Ref. Sta. C	Standard 'f Mardar # onc: aceaciae to g Standard T Standard T yttpder #:	уре: SRM #: SRM C SRM C 506 C 127.4	Sample Vinder : C: C:	GN CC 50 78. #: 27 #: 27 # # # # # # # # # # # # # # # # # # #	AIS 2115492 8 ppm 1880b -0 -55580 Date: Conc: Conc: Cone: est Assay: AIS 2244261	428 427 428	
This cylinder w Do Not Use this PGVP 1.D.# F2 Hical Data: 1 Component: Requested Cono Analytical Metri Last Nutsport Filed Analysis 2: 0 WOW: pp 2. Component: Requested Cono Certified Conce	Standard if P 2011. First and CARBON contration ministen: di calubrateur Data: Ri Sco Z: D C: 429 NITREC 03 Descritten: itestion;	rèssure la alysis for (R=A MONOXIDE 41 42 44 44 44 44 44 44 44 44 44 44 44 44	s less than [NO] was d Prieveou Start 15 ppm 26 ppm ORIBA, VIA-01 DIR 502/2011 Pi 427.7 428 506 Filean Test A Spom 35 ppm 36 ppm	150 PSIG. Ione using 99 Idein, 2-240 Gas Io 5/5 876 015 Ide: 05/10/201 Ine: 428 Ine: 428 Ine: 428	9.8 ppm GMi 9, C=0785 Candi 11 p2m	5. date) 847 2; R: 2; 2;	Reference Ref. Sta. C Ref. Sta. C Ref. Sta. tr opd Anatysi O Soc D Reference Ref. Sta. C Ref. Sta. C	Standard If ydridar # ane: aceative to a Data: B: Z: C: Standard T ydpdor #: art:	ура: SRM #: SRM C SRM C SOS C 127.4	Sample Vinder : C: C:	Gh CC SO #: 2-1 #: 2F 426.4 427.4 508 Mean T GA CC 96	IIS 2115492 8 ppm 4880b -0 -35980 Date: Conc: Co	428 427 428	
This cylinder w Do Not Use thi PGVP I.D.# F2 nticul Data: 1 Component: Requested Con Cartilled Conce haroument Use Analytical Metri Lest Nutsport Filed Analysis 2: 0 R: 505 2: 0 UOH: poi 2. Component: Requested Con	S Standard if P 2011. First and CARBON Contration Introton: di Git Data: RU SOS Z: 0 C: 429 B NITRIC ÓJ Sestiration: Inteléni: E:	rèssure i alysis for (R=A MONÒXIDE 41 41 41 41 41 41 41 41 41 41 41 41 41	s less than [NO] was d Princeacy Start 15 ppm 25 ppm ORIDA, VIA-01 DIR 502/2011 422.7 C 428 G 428 G 428 G 16 ppm 16 ppm 16 ppm 16 ppm 16 ppm 17 ppm 16 ppm 16 ppm 17 ppm 18 ppm	150 PSIG. Ione using 99 Iokin, 2-zero Ga Io 5/5 876 015 Ide: 05/10/201 Ine: 428 Ine: 428 Ine: 428 Ine: 428	9.8 ppm GMi 9, C=0785 Candi 11 p2m	5. date) 847 2; R: 2; 2;	References Ref. Sta. C Ref. Sta. C Ref. Sta. tr Phd Analysi O Soc O Reference Ref. Sta. C	Standard If ydridar # ane: aceative to a Data: B: Z: C: Standard T ydpdor #: art:	уре: SRM #: SRM C SRM C SRM 7 127.4 Уре: SRM #: SRM #:	Sample Sample C: C: R: Sample	Gh GC 50 73. #: 277 #: FF 426.4 427.4 508 Mean T Gh CC 96 96 75. #: 44	415 5115492 8 ppm 1880b -0 -35980 Date; Cone; Cone; Cone; cone; cone; 415 2244661 2 ppm 1054b 244661 2 ppm	428 427 428	
This cylinder w Do Not Use thi PGVP LD.# F2 sticul Data: 1. Component: Requested Cono Automent Use Analytical Meth Leat Muthpoint - Firel Analysis 2: 0 R: 505 2: 0 UOW: ppp 2. Component: Requested Con Certified Conce Instument Use Analytical Meth Last Muthpoint (Standard if P 2011. First and cantation hirston: d: autoration: Ri SCC Z: D Sectoration: Ri SCC Z: D Sectoration: http://www.scc sectoration: http://www.scc sectoration: http://www.scc sectoration: http://www.scc sectoration:	rèssure in alysis for (R=A MONOXODE 40 40 40 40 40 40 40 40 40 40 40 40 40	s less than [NO] was d Primercy Start 1 15 ppm 20	150 PSIG. Ione using 99 Ideid, Z-Zero Get Io 5/5 876 015 Idei: 05/10/201 Onc: 428 onc: 428 onc: 428 inc: 428 inc: 428 inc: 428	9.8 ppm GMi 9, C=0785 Candi 11 p2m	S. date) Z: R: Z: UON	References Ref. Sta. C Ref. Sta. C Ref. Sta. C Soc 0 8: ppre Reference Ref. Sta. C Ref. Sta. 2 Ref. Sta. 2	Standard // Misriar #. onc: aosacire to a Data: B: Z: C: Standard T yttpdor #: arc: accebie to	уре: SRM #: SRM C SRM C SRM 7 127.4 Уре: SRM #: SRM #:	Sample Vinder : C: C: R:	Gh GC 50 73. #: 277 #: FF 426.4 427.4 508 Mean T Gh CC 96 96 75. #: 44	IIS 2115492 8 ppm 1880b -0 -55380 Date: Conc: State: Conc: Conc: Conc: Conc: State: State: State: State: Conc: Conc: Conc: Conc: Conc: Conc: Conc: State: State: State: State: Conc: Conc: Conc: Conc: Conc: Conc:	428 427 428 427	
This cylinder w Do Not Use thi PGVP LD.# F2 sticul Data: 1. Component: Requested Cono Assument Use Analytical Meth Leat Muthoirt - Firei Analysis 2: 0 R: 50 2: 0 UOW: pp 2. Component: Requested Con Certified Cons Craffed Con Certified Cons Enstument Use Analytical Meth Las: Muthoirt Use	Standard if P 2011. First and CARBON centration hirston: it: autoration: Ri SCC Z: 0 C: 429 NITREC (0) Sentration: htmlon: i: subration: htmlon: i: subration: Deta:	rèssure i alysis for (R=A HONOXODE 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 42 42 42 42 42 42 42 42 42	s less than [NO] was d Primercy Start 1 15 ppm 20	150 PSIG. Ione using 99 Ideid, Z-Zero Get 10 5/5 876 015 Idei: 05/10/201 Ione: 428 Inte: 428 Inte: 428 Inte: 428 Inte: 428 Inte: 428 Inte: 428 Inte: 428 Inte: 428	9.8 ppm GMi 9, C=995 Candi 11 5971 32C	S. date) Sec Z: R: Z: UOM	Reference Ref. Sta. C Ref. Sta. C Ref. Sta. C Ref. Sta. C Soc 0 0 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Standard If Marder # onc: aceacle to standard T Standard T Standard T Standard T Standard T Standard T	YP#: SRM #: SRM C SOS C 127.4 YP#: SRM #: SRM #:	Sample Sylinder C: C: C: R: Sample Sample	GN CC 50 78. #: 27 #: 27 #: 27 #: 27 #: 27 #: 27 428.4 427.4 508 Mean T GM CC 96 96 96 97 8. #: 44 #: 24 96 96 97 8. #: 24 96 96 96 97 8. #: 24 96 96 96 96 96 96 96 96 96 96 96 96 96	AIS 2115492 8 ppm 1880b -0 -555980 Date: Conc: Conc: Conc: Conc: Conc: Conc: 413 244651 2 ppm 1054b -3-51 105542 Dist:	428 427 428 427 06/17/2011	
This cylinder w Do Not Use thi PGVP LD.# F2 sticul Data: 1. Component: Requested Con- Certified Conce Maximent Use Analytical Meth- Lest Midspoint First Analysis Z: 0 R: 505 Z: 0 UOM: pp 2. Component: Requested Con- Certified Conce Instrument Use Analytical Meth- Last Midspoint First Analysis Z: 0	Standard if P 2011. First and CARBON contration introton di calorator Ri Sos Z: 0 C: 428 n NITRC 03 Servication: theticn: t: di calorator Ri Sos Servication: theticn: t: di calorator Ri Sos Servication: theticn: t: di calorator Ri Sos Servication: theticn: t: di calorator Ri Sos Servication: theticn: t: di calorator Ri Sos Servication: t: di calorator Ri Sos Servication: Ri Sos Servication: Servication: Ri Sos Servication: Ri Sos Servication Ri Sos Servication: Ri Sos Servication Ri Sos Servication Ri Sos Servication Ri Sos Servication Ri Sos Servication Ri Sos Servicatio	rèssure in alysis for (R=A MONOXIDE 41 44 HH N N OR C: C: C: C: C: C: C: C: C: C: C: C: C:	s less than [NO] was d Princency Start 15 ppm 26 ppm 26 ppm 27 p	150 PSIG. Ione using 99 Ideit, 2-Zero Get 10 5/5 876 015 Idei: 05/10/201 One: 428 Inte: 428 Inte: 428 Inte: 428 Idei: 428 Idei	9.8 ppm GMi 9, C=995 Candi 11 5971 32C	5. date) 840 2; R: 2; UON 540 2; 2; 2;	References Ref. Sta. C Ref. Sta. C Ref. Sta. C Ref. Sta. C 506 0 506 0 8 Reference Ref. Sta. C Ref. Sta. C Ref. Sta. C Ref. Sta. C Ref. Sta. C Ref. Sta. C	Standard If Marder # onc: aceacle to standard T Standard T Standard T Standard T Standard T Standard T	ура: SRM #: SRM (SRM (506 С 127.4 Ура: SRM #: SRM #: SRM (SRM (SRM () SRM ()	Sample Sample C: C: R: Sample	Gh CC SO V3. #: 2-7 #: FF 426.4 427.4 505 Mean T GA CC 96 96 V3. #: 44 #: C2 83.4	IIS 2115492 8 ppm 1880b -0 -55380 Date: Conc: State: Conc: Conc: Conc: Conc: State: State: State: State: Conc: Conc: Conc: Conc: Conc: Conc: Conc: State: State: State: State: Conc: Conc: Conc: Conc: Conco: Conc:	423 427 428 427 06/17/2011 83.4	£
This cylinder w Do Not Use thi PGVP LD.# F2 sticul Data: 1. Component: Requested Cono Assument Use Analytical Meth Leat Muthoirt - Firei Analysis 2: 0 R: 50 2: 0 UOW: pp 2. Component: Requested Con Certified Cons Craffed Con Certified Cons Enstument Use Analytical Meth Las: Muthoirt Use	Standard if P 2011. First and CARBON centration hirston: it: autoration: Ri SCC Z: 0 C: 429 NITREC (0) Sentration: htmlon: i: subration: htmlon: i: subration: Deta:	rèssure i alysis for (R=A HONOXODE 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 42 42 42 42 42 42 42 42 42	s less than [NO] was d Prieveory Start 15 ppm 25 ppm ORIBA, VIA-01 DIR 502/2011 2428 C 427.7 C 428 C 428 C 506 C Rean Test An 5 ppm beno Electron terniustinesce 502/2011 DR 83.9 C	150 PSIG. Ione using 99 Ideid, Z-Zero Get 10 5/6 876 015 Idei: 05/10/201 Ione: 428 Inte: 428 Inte: 428 Inte: 428 Inte: 428 Inte: 428 Inte: 428 Inte: 428 Inte: 428	9.8 ppm GMi 9, C=995 Candi 11 5971 32C	S. date) Sec Z: R: Z: UOM	Reference Ref. Sta. C Ref. Sta. C Ref. Sta. C Ref. Sta. C Soc 0 0 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Standard if yis-der #: one: aceable to aceable to g: Z: C: C: Standard T yithder #: acti: g: coble to s Data: R:	YP#: SRM #: SRM C SOS C 127.4 YP#: SRM #: SRM #:	Sample Sylinder : C: C: R: Sample Sample C:	GN CC 50 78. #: 27 #: 27 #: 27 #: 27 #: 27 #: 27 428.4 427.4 508 Mean T GM CC 96 96 96 97 8. #: 44 #: 24 96 96 97 8. #: 24 96 96 96 97 8. #: 24 96 96 96 96 96 96 96 96 96 96 96 96 96	IIS 2115492 8 ppm 4880b -3 -35980 Date: Cone: Cone: ett Assay: 485 2244661 2 ppm 485 2344661 2 ppm 485 244661 2 ppm 485 20 20 20 20 20 20 20 20 20 20	428 427 428 427 06/17/2011	

Analyzed by:

Melan Nelson Ma

Illa

Certified by:

Diego Mestanza

Information contained herein has been prepared at your request by qualified experts within Poxale Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the second of the specified enalyses performed, we make no warranty or representation as to the suitability of the use of the information for any perpose. The information is affected with the understanding that any use of the information is at the sole docurrient and this of the use. In no event shall the stability of Praxar Distribution, inc. arising out of the use of the information contained herein exceed the fee established for providing such information.

Making Our Planet More Productive

APPENDIX E EQUIPMENT CALIBRATION RECORDS

E-1

LIVERMORE CA 925 455 9474

METER BOX FULL TEST CALIBRATION

Meter #: 29049

AH@ 2.170 2.195 2.113 2.006 2,199 2.005 2.008 2.197 1.0049 1,0050 1.0026 1.0054 0.9974 0.9970 0.9864 0.9903 ΔH@ 2.120 2.107 Ŋ Previous 0.9855 Current 0.9969 0.353 0.355 0.360 0.638 0.636 0.859 0.637 0.857 Хd 0 (Min.) 14.00 14.30 15.40 11.85 Time 14.23 15.53 15.38 21.11 11.33 Ø (T_d) Avg. 77.0 80.8 74.0 74.5 75.0 78.8 80.3 83.3 85.3 Init. End (T_o) outlet 74 76 80 80 74 76 78 Temperature 75 8 Meter Box 74 74 75 76 62 80 81 74 5 End 75 86 76 90 75 82 84 81 84 (T_i) Inlet Ink. 73 75 75 76 82 80 8 81 84 Meter Temp. (T_{ds}) Avg. Standard Meter: Wet Gas Meter 75.0 75.0 75.0 76.0 76.0 76.0 77.0 77.0 77.0 Std. Meter Orifice ID: #2 11/64 10.090 10.104 10.708 13.737 10.131 Leak Checked: 18, 8.2 5.160 13.867 5.021 5,219 Vet Net Bar. Pressure (Pb): 29.60 Test Vacuum "Hg: 3" Meter Box Gas Volume (ft³) 150.524 124.435 200.463 119.275 140.420 176.018 189.755 129.654 164.391 Final 119.275 140.420 189.755 114.254 150.524 124.435 130.330 176.018 Initial 165.887 13.770 10.165 10.000 13.550 10.450 10.065 5.198 5.240 (Vds) Net 5.062 Standard Meter Gas **Operator: BOB GALLAGHER** Volume (ft³) 34.000 10.165 20.230 34.000 10,000 23.550 Final 10.260 15.500 5.062 10.165 Initial 10.260 20.230 23.550 10.000 0.000 5.062 0.000 0.000 Date: 7 26 13 Signature QAQC Officer: 1.000 1,000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Yds -0.055 -0.060 -0.085 -0.060 -0.075 -0.070 -0.070 -0.090 -0.085 ΔP 1.50 3.00 ЧΥ 0.50 0.50 0.50 1.50 1.50 3.00 3.00

this is the calib. Cert. Comments:

Variables:

Q = Flow rate (cfm)

 $\Delta H = Orifice pressure differential (in. H₂O)$

 $\Delta P =$ Inlet pressure differential standard meter (in. Ho)

Yds = Standard meter correction factor (Unitless)

Yd = Meter box correction factor (Unitless)

 $\Pi \Delta H @ = Orifice pressure differential that gives 0.75 DSCFM of air <math>\Delta H @ = 0.75 DSCFM$ of air $\Delta H @ = 0.75 DSCFM$ at 68°F and 29.92 in. Hg (in. H₂O)

1. Yd Tolerence: $(Yd_{AVG}^{-}Yd) \pm 0.02$ ref. Fig 5.6 in EPA method 5 2

2. $\Delta H@$ Tolerence: ($\Delta H@_{AV0}$ - $\Delta H@$) \pm 0.20 ref. fig 5.6 in EPA method 5.

 $Yd = \left(Yds\right)\left(\frac{Vds}{Vd}\right)\left(\frac{Td+460}{Tds+460}\right)\left(\frac{Pb+\Delta P/13.6}{Pb+\Delta H/13.6}\right)$

2,185

0.9834

0.858

 $\frac{0.0317 \times \Delta H}{Pb(T_o + 460)} \left[\frac{(Tds + 460)\theta}{Vds \times Yds} \right]^2$ $\Delta H @ = -$

 $Q = \frac{17.64 \times Vds \times Pb}{(Tds + 460)\theta}$

g:\cals\metercal\master1

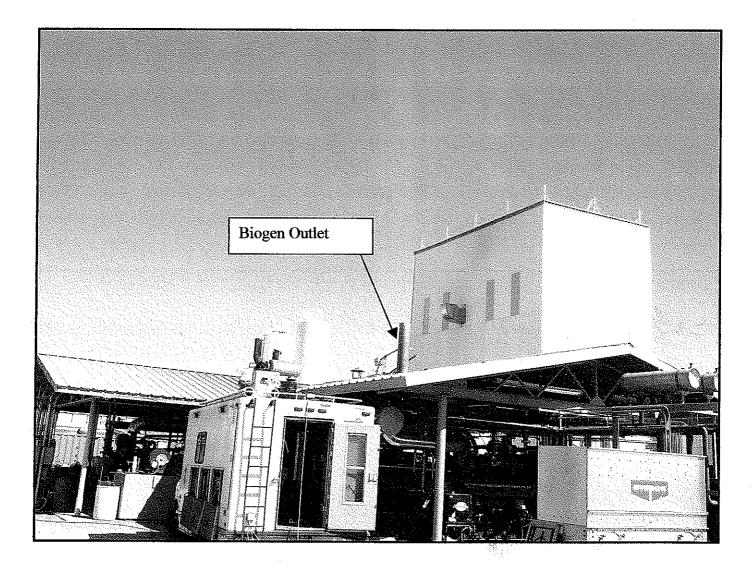
	BEST	ENV	IRC	NN	IEN	TAL.	INC
--	------	-----	-----	----	------------	------	-----

-					
			•	<i>•</i> • • •	ometer Calibration
Calibrate	ed By: <u></u>	BR	Ballap_		Date Calibrated:

Date Calibrated: _____1-8-14

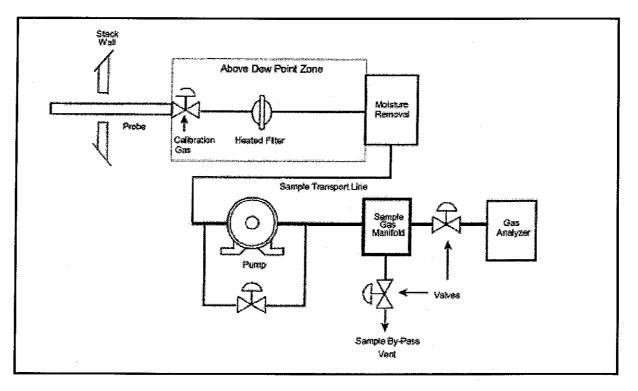
Calibration Due: 7-8-14

Thermometer ID	Test Thermometer Temp (°F)	Reference Thermocouple (°F)	Temp Difference	% Difference	Notes
14a inlet	.34	32.4	+1.6		PASS
	58	60.8	-2.8		Pass
				,	· · · · · · · · · · · · · · · · · · ·
	120	120,6	-,6		PASS
14B cotlet	33	32.4	+.6	· · · · · · · · · · · · · · · · · · ·	Pass
		-		, 	
	59	60.8	-2.8		Pass
	· · · · ·				
	118	120.9	-2.9		ASS
				•	
NIST Pyrometer:	1223406	T/Couple:	950306		•
ASTM Thermometer	: 3304 R	m			
Comments:				· · · · · · · · · · · · · · · · · · ·	
		• .			
Reference Thermometer: Method Reference: EPA C Folerance Limits: ± 5.4 °F	2A Handbook Vol. III: Stat at ambient temperature a	ionary Source Specific Me and in hot water bath.	thods, sect. 3.5.2.2		


Calibrat

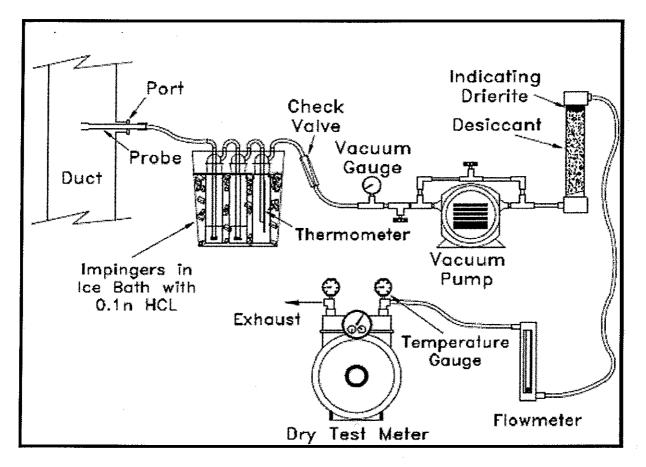
APPENDIX F STACK DIAGRAMS

F-1

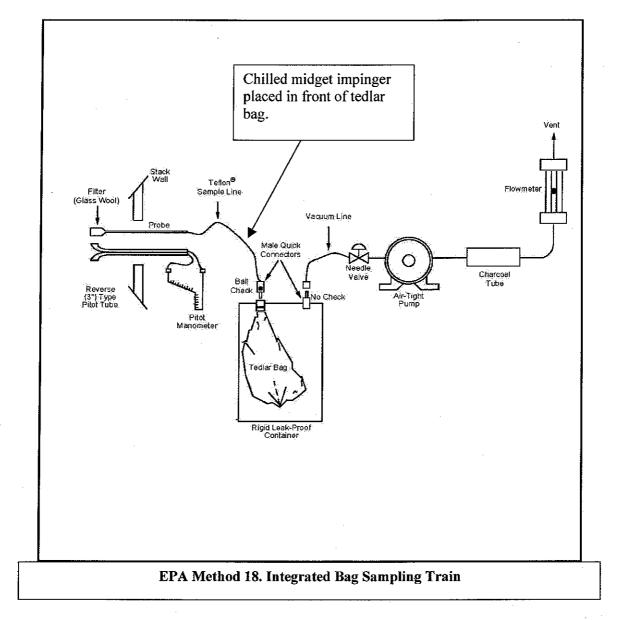

Joseph Gallo Farms Atwater, CA

800KW Biogen (N-1660-10-0)

APPENDIX G SAMPLING SYSTEM DIAGRAMS


EPA Methods 3A, 6C, 7E & 10

CEM Sampling Train


Livermore, CA 925 455-9474

BAAQMD Method ST-1B

Ammonia Sampling Train

EPA Method 18 (Modified)

APPENDIX H SOURCE TEST PLAN

This Section is Not Applicable

H-2

APPENDIX I PERMIT TO OPERATE

I-1

San Joaquin Valley

R POLLUTION CONTROL DISTRICT

ISSUANCE DATE: 07/25/2011

AUTHORITY TO CONSTRUCT

PERMIT NO: N-1660-10-0

LEGAL OWNER OR OPERATOR: GALLO CATTLE COMPANY MAILING ADDRESS:

PO BOX 775 ATWATER, CA 95301-0775

LOCATION:

10561 W HIGHWAY 140 ATWATER, CA 95301

EQUIPMENT DESCRIPTION:

1,152 BHP GUASCOR MODEL SFGLD-480 LEAN-BURN DIGESTER GAS-FIRED INTERNAL COMBUSTION ENGINE SERVED BY AN ENGINE FUEL EMISSIONS ENGINEERING INC'S SELECTIVE CATALYST REDUCTION SYSTEM. THIS ENGINE POWERS AN 800 KW ELECTRICAL GENERATOR

CONDITIONS

- Particulate matter emissions shall not exceed 0.1 grains/dscf in concentration. [District Rule 4201] 1.
- 2. No air contaminant shall be discharged into the atmosphere for a period or periods aggregating more than three minutes in any one hour which is as dark as, or darker than, Ringelmann 1 or 20% opacity. [District Rule 4101]
- No air contaminant shall be released into the atmosphere which causes a public nuisance. [District Rule 4102] 3.
- 4. This engine shall be equipped with either a positive crankcase ventilation (PCV) system that recirculates crankcase emissions into the air intake system for combustion, or a crankcase emissions control device of at least 90% control efficiency. [District Rule 2201]
- The exhaust stack shall vent vertically upward. The vertical exhaust flow shall not be impeded by a rain cap (flapper 5. ok), roof overhang, or any other obstruction. [District Rule 4102]
- This engine shall only be fired on digester gas. [District Rule 2201] б.
- The permittee shall utilize and maintain a non-resettable elapsed operating time meter. In lieu of a non-resettable 7. operating time meter, the owner/operator may use an alternative device, method, or technique for determining operating time. [District Rule 4702]
- Sampling ports adequate for hydrogen sulfide (H2S) testing shall be provided in the fuel line. [District Rule 2201] 8.

CONDITIONS CONTINUE ON NEXT PAGE

YOU MUST NOTIFY THE DISTRICT COMPLIANCE DIVISION AT (209) 557-6400 WHEN CONSTRUCTION IS COMPLETED AND PRIOR TO OPERATING THE EQUIPMENT OR MODIFICATIONS AUTHORIZED BY THIS AUTHORITY TO CONSTRUCT. This is NOT a PERMIT TO OPERATE. Approval or denial of a PERMIT TO OPERATE will be made after an inspection to verify that the equipment has been constructed in accordance with the approved plaps specifications and conditions of this Authority to Construct, and to determine if the equipment can be operated in compliance with all Rules and Regulations of the San Joaquin Valley Unified Air Pollution Control District. Unless construction has commenced pursuant to Rule 2050, this Authority to Construct shall expire and application shall be cancelled two years from the date of issuance. The applicant is responsible for complying with all laws, ordinances and regulations of all other governmental agencies which may pertain to the above equipment.

Seved S dreain, Executive Director / APCO

DAVID VARNER Director of Permit Services

> Northern Regional Office • 4800 Enterprise Way • Modesto, CA 95356-8718 • (209) 557-6400 Fax (209) 557

Conditions for N-1660-10-0 (continued)

- 9. Sampling facilities for source testing shall be provided in accordance with the provisions of Rule 1081 (Source Sampling). [District Rule 1081]
- 10. NOx emissions shall not exceed 9.0 ppmvd @ 15% O2 or 0.15 g/bhp-hr referenced as NO2. [District Rules 2201, 4701 and 4702]
- 11. CO emissions shall not exceed 123 ppmvd @ 15% O2. [District Rules 2201, 4701 and 4702]
- 12. VOC emissions shall not 48.2 ppmvd @ 15% O2 referenced as methane. [District Rules 2201, 4701 and 4702]
- 13. PM10 emissions (filterable and condensable) shall not exceed 0.04 g/bhp-hr. [District Rule 2201]
- 14. Ammonia (NH3) emissions from the SCR system shall not exceed 10 ppmvd @ 15% O2. [District Rule 2201]
- 15. H2S concentration in the digester gas used as a fuel in the engine shall not exceed 59 ppmv in any one day. [District Rules 2201 and 4801]
- 16. H2S concentration in the digester gas used as a fuel in the engine shall not exceed 40 ppmv in any 12 consecutive month rolling period. The monthly H2S readings shall be taken using Draeger tubes or a District approved equivalent method at the time of monitoring and recording NOx, CO, NH3 and O2 concentrations. These readings shall be used to demonstrate compliance with this condition. [District Rule 2201]
- 17. Testing to demonstrate compliance with the fuel H2S content limit of this permit shall be conducted weekly. Once eight consecutive weekly tests show compliance, the fuel H2S content testing frequency may be reduced to once every calendar quarter. If a quarterly test shows a violation of the H2S content limit of this permit, then weekly testing shall resume and continue until eight consecutive tests show compliance. Once compliance is shown on eight consecutive weekly tests, then testing may return to quarterly. The permittee shall keep records of the date and time of H2S measurements, measured H2S concentrations (ppmv) to demonstrate compliance with the permit limit. [District Rule 2201]
- 18. Source testing to demonstrate compliance with the permitted NOx, CO, VOC, PM10 and NH3 emission limits shall be conducted within 60 days of initial startup. [District Rules 2201, 4701 and 4702]
- 19. Source testing to demonstrate compliance with the permitted NOx, CO, VOC and NH3 emission limits shall be conducted at least once every 24-months after the previous test. [District Rules 4701 and 4702]
- 20. Emissions source testing shall be conducted with the engine operating either at conditions representative of normal operations or conditions specified in the Permit to Operate. [District Rules 4701 and 4702]
- 21. For emissions source testing, the arithmetic average of three 30-consecutive-minute test runs shall apply. If two of three runs are above an applicable limit the test cannot be used to demonstrate compliance with an applicable limit. [District Rules 4701 and 4702]
- 22. Testing to measure the H2S content of the fuel shall be conducted using either EPA Method 15 or ASTM Method D1072, D4084, D3246, D5504 or with the use of the Testo 350 XL portable analyzer. [District Rule 2201]
- 23. The following test methods shall be used for testing: NOx (ppmv) EPA Method 7E or ARB Method 100; CO (ppmv) EPA Method 10 or ARB Method 100; VOC (ppmv) EPA Method 18, 25A or 25B, or CARB Method 100; NH3 BAAQMD ST-1B; PM10 (filterable and condensable) EPA Method 201 or 201A and 202, CARB Method 5 in combination with 501, and stack gas oxygen EPA Method 3 or 3A or ARB Method 100. EPA approved alternative test methods as approved by the District may also be used to address the source testing requirements of this permit. [District Rules 1081, 4701 and 4702]
- 24. The District must be notified at least 30 days prior to any compliance source test, and a source test plan must be submitted for approval at least 15 days prior to testing. [District Rule 1081]
- 25. The results of each source test shall be submitted to the District within 60 days thereafter. [District Rule 1081]

Conditions for N-1660-10-0 (continued)

- 26. The permittee shall monitor and record the stack concentration of NOx, CO, NH3, and O2 at least once every month (in which a source test is not performed). NOx, CO and O2 monitoring shall be conducted utilizing a portable analyzer that meets District specifications. NH3 monitoring shall be conducted utilizing gas detection tubes (Draeger brand or District approved equivalent). The monthly monitoring shall not be required if the engine is not in operation, i.e. the engine need not be started solely to perform monitoring. Furthermore, the monthly monitoring shall be performed within 5 days of restarting the engine unless monitoring has been performed within the last month. Records must be maintained of the dates of non-operation to validate extended monitoring frequencies. [District Rules 2201, 4701 and 4702]
- 27. All alternate monitoring parameter emission readings shall be taken with the unit operating either at conditions representative of normal operations or conditions specified in the permit-to-operate. The analyzer shall be calibrated, maintained, and operated in accordance with the manufacturer's specifications and recommendations or a protocol approved by the APCO. Emission readings taken shall be averaged over a 15 consecutive-minute period by either taking a cumulative 15 consecutive-minute sample reading or by taking at least five (5) readings, evenly spaced out over the 15 consecutive-minute period. [District Rules 2201, 4701 and 4702]
- 28. If either the NOx, CO, or NH3 concentrations corrected to 15% O2, as measured by the portable analyzer or the District approved ammonia monitoring equipment, exceed the allowable emission concentration, the permittee shall return the emissions to within the acceptable range as soon as possible, but no longer than 8 hours after detection. If the readings continue to exceed the allowable emissions concentration after 8 hours, the permittee shall notify the District within the following 1 hour, and conduct a certified source test within 60 days of the first exceedance. In lieu of conducting a source test, the permittee may stipulate a violation has occurred, subject to enforcement action. The permittee must then correct the violation, show compliance has been re-established, and resume monitoring procedures. If the deviations are the result of a qualifying breakdown condition pursuant to Rule 1100, the permittee may fully comply with Rule 1100 in lieu of performing the notification and testing required by this condition. [District Rules 2201, 4701 and 4702]
- 29. The permittee shall maintain records of: (1) the date and time of NOx, CO, NH3, H2S and O2 measurements, (2) the O2 concentration in percent and the measured NOx, CO, and NH3 concentrations corrected to 15% O2, (3) make and model of exhaust gas analyzer, (4) exhaust gas analyzer calibration records, and (6) a description of any corrective action taken to maintain the emissions within the acceptable range. [District Rules 2201, 4701 and 4702]
- 30. The permittee shall maintain records, on a monthly basis, that contain the following information: (1) total hours of operation; (2) type of fuel used; (3) maintenance or modifications performed; (4) monitoring data; and (5) compliance source test results. [District Rules 4701 and 4702]
- 31. This engine shall be operated and maintained in proper operating condition per the manufacturer's requirements as specified on the Inspection and Monitoring (l&M) plan submitted to the District. [District Rule 4702]
- 32. This engine shall be operated within the ranges that the source testing has shown result in pollution concentrations within the emissions limits as specified on this permit. [District Rule 4702]
- 33. The permittee shall update the I&M plan for this engine prior to any planned change in operation. The permittee must notify the District no later than seven days after changing the I&M plan and must submit an updated I&M plan to the APCO for approval no later than 14 days after the change. The date and time of the change to the I&M plan shall be recorded in the engine's operating log. For modifications, the revised I&M plan shall be submitted to and approved by the APCO prior to issuance of the Permit to Operate. The permittee may request a change to the I&M plan at any time. [District Rule 4702]
- 34. All records shall be maintained and retained on-site for a minimum of five (5) years, and shall be made available for District inspection upon request. [District Rules 4701 and 4702]
- 35. This engine is subject to the requirements of 40 CFR Part 63 Subpart ZZZZ National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines. Currently, the U.S. EPA administers the requirements of this subpart. The owner or operator shall comply with the applicable emission and operating limitations, testing requirements, initial and continuous compliance requirements as specified in this subpart. [District Rule 4002]