Best Available Control Technology (BACT) Guideline 4.1.1*

Last Update: 5/11/2022

Dry Cleaner - Perchloroethylene, Closed Loop with Primary and Secondary Controls *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.1.2*

Last Update: 6/28/2022

Petroleum Solvent Dry Cleaning

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
VOC	Closed-loop (ventless), dry- to-dry machine with a refrigerated vapor condenser (or equivalent) and operated in compliance with District Rule 4672		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.2.1*

Last Update: 8/16/2023

Automotive Spray Painting Operation, < 5.0 MMBtu/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.2.2*

Last Update: 5/11/2022

Group II Vehicles Spray Painting Operation - Vehicles requiring a Color Match *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.2.3*

Last Update: 9/12/2022

Mobile Equipment Coating Operation - Multiple Location, <= 20,000 lb-VOC/year *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.2.4*

Last Update: 9/19/2022

Mobile Equipment Coating Operation

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Use of coatings and application methods compliant with District Rule	1.Thermal/Catalytic Incineration (98% capture and control)	
	4612	2. Carbon Adsorption (95% capture and control) (Tech Feasible)	
PM10	1. Coating application methods compliant with District Rule 4612;		
	2. Spray Booth with exhaust filters; 95% control efficiency		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.2.5*

Last Update: 9/27/2021

Limited Aircraft Coating Operation - Maintenance and Refinishing of Metal Parts on Aircraft, < 20 Gallons/day

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Using coatings compliant with SJVAPCD Rule 4605, except for the following coatings: Antichafe coatings < or = 420 g/l; high temperature coatings < or = 420 g/l; radiation effect coatings < or = 600 g/l; and metalized epoxy coatings < or = 700 g/l. HVLP application method or equivalent, and an enclosed gun cleaner or equivalent	 98% control (capture and control with thermal or catalytic oxidizer, or equal) 95% control (capture and control with carbon adsorption, or equal) 	
PM10	HVLP application method or equivalent	Enclosed spray booth with dry filters and use of HVLP application equipment	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.2.6*

Last Update: 9/27/2021

Aerospace Parts Coating Operation

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	The use of coatings, cleaning materials, and	1) Thermal Oxidation	
	solvents compliant with District Rule 4605 and use	2) Catalytic Oxidation	
	of HVLP application equipment	3) Carbon Adsorption	
PM10	Enclosed paint booth with dry filters and use of HVLP application equipment		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.2.7*

Last Update: 9/27/2021

Solid Dry Film Based Lubricant Coating Operations for Metal Parts and Products and Aerospace Assembly and Components

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Solvent-based solid film lubricant coatings with a VOC content, as applied, of	1) VOC capture and thermal incineration system	
	6.44 lb VOC/gal (excluding water and exempt solvents) or lower	2) VOC capture and catalytic incineration system	
		 VOC capture and carbon adsorption system 	
PM10	Enclosed paint spray booth with dry filters and use of HVLP gun or equivalent application equipment		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.2.8*

Last Update: 12/29/2021

Recreational Marine Vessel (Pleasure Craft) Coating

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Use of materials with VOC contents (less water and exempt compounds) as indicated, or lower: - antifouling coatings: aluminum substrate - 440 g/l, other substrates - 330 g/l, - high gloss coatings: 340 g/l** - extreme high gloss coatings: 490 g/l*** - pretreatment wash primers: 420 g/l - primers: 340 g/l - all other coatings: 340 g/l	 VOC capture and control (thermal incineration, catalytic incineration, or equal) with a minimum overall control efficiency of 98%. VOC capture and control (carbon adsorption or equal) with a minimum overall control efficiency of 95% 	
PM10	Enclosed paint spray booth with particulate filters and HVLP application equipment (or equivalent)		

High gloss coating: any coating that achieves at least 85% reflectance on a 60 degree meter when tested by ASTM Method D-523. *Extreme high gloss coating: any coating that achieves at least 95% reflectance on a 60 degree meter when tested by ASTM Method D-523.

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.2.9*

Last Update: 9/27/2021

Aerospace Parts Coating Operation - Plasma Spray Application

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
PM10	= or > 99.97% Control Efficiency (HEPA filtration system, MERV 17 filtration system, or equivalent)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.2.10*

Last Update: 9/19/2019

Motor Vehicle Chassis Coating Operation - Electrodeposition with Curing Oven

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
VOC	95% control (VOC capture and control system serving the coating tank and curing oven. Capture system vented to a thermal/catalytic oxidizer, or equal)	Ultra-low VOC coating, coatings with VOC content of 0.08 lb/gal or less (less water and exempt compounds)	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.2.11*

Last Update: 4/30/2018

Motor Vehicle Assembly (OEM) Adhesives Application Operation - Glass Installation (Non-Spray Application)

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Adhesives with a VOC content ≤ 250 g/l;	1) Thermal/Catalytic Inciineration (98% capture and control)	
	Adhesive Primers with a VOC content ≤ 700 g/l	2) Carbon Adsorption (95% capture and control)	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.2.12*

Last Update: 4/30/2018

Small Scale Motor Vehicle Assembly (OEM) Coating Operation with a Booth Heater, < 2,000 lb-VOC/year

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Coatings compliant with District Rule 4602	1) Thermal/Catalytic Incineration (98% capture and control)	
		2) Carbon Adsorption (95% capture and control)	
PM10	0 Spray Booth with Exhaust Filters (95% control efficiency)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.3.1*

Last Update: 5/11/2022

Metal Parts and Products Coating - Air Dried (excluding specialty coating as defined in Rule 4603) *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.3.2*

Last Update: 5/11/2022

Metal Parts and Products Coating - Heat Dried *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.3.3*

Last Update: 2/22/1995

Metal Product Coating - Metal Rod Dip Coating, Air-Dried, = or > 150 gallons/month coating **RESCINDED 10/4/11; SEE 4.3.18**

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
VOC	Dip coating with low VOC content of 3.5 lb/gallon (less water and exempt compounds), Dip tank covered when not in use		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.3.4*

Last Update: 6/1/1995

Metal Product Coating - Limited Metal Rod Dip Coating, Air-Dried, < or = 15 lb/day Facility VOC coating emissions **RESCINDED 10/4/11; SEE 4.3.18**

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
VOC		Dip coating with VOC content of 6.2 lb/gallon, and dip tank covered when not in use	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.3.5*

Last Update: 4/21/2020

Metal Parts and Products Coating Operations (using specialty coatings as defined by Rule 4603) *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.3.6*

Last Update: 8/16/2023

Metal Products Coating - Shipping/Storage Containers *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.3.7*

Last Update: 5/1/2020

Powder Coating Operation with Curing Oven

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Low VOC content coating with < 1.5% by weight, and use natural gas-fired curing oven	 Thermal or Catalytic Incineration Carbon Adsorption 	
SOX	Use natural gas-fired curing oven		
PM10	Enclosed booth with 99% control efficiency, and use natural gas-fired curing oven		
NOX	Use natural gas-fired curing oven		
СО	Use natural gas-fired curing oven		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.3.8*

Last Update: 8/16/2023

Metal Product Coating - Large Steel Structures, < 64 lb VOC/day, Outdoor Coating Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.3.9*

Last Update: 12/30/2020

Metal Product Coating - Large Steel Structures, Indoor Operation

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Use of low VOC coatings (2.5 lb/gal less water and exempt compounds) and HVLP spray gun(s) or equivalent application	1) Thermal incineration using coatings with a low VOC content (2.5 lb/gal less water and exempt compounds) and total enclosure (98% Control)	
	method	2) Catalytic incineration using coatings with a low VOC content (2.5 lb/gal less water and exempt compounds) and total enclosure (98% Control)	
		3) Carbon adsorption using coatings with a low VOC content (2.5 lb/gal less water and exempt compounds) and total enclosure (95% Control)	
PM10	HVLP Spray Gun(s)	Enclosed painting operation with filter(s) on exhaust vent (90% Control)	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.3.10*

Last Update: 12/29/2021

Metal Products Coating of Sheet Metal for Can Manufacturing at a Major Source for VOC

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	VOC capture and control (thermal incineration) with overall efficiency of at least 98.5%		
NOx	Dryer: 20 ppmv @ 3% O2 (Low-NOx Burner or equivalent)	Dryer: 9 ppmv @ 3% O2 (Ultra-Low NOx burner or equivalent)	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.3.11*

Last Update: 5/11/2022

Metal Products Coating - Touch-up, 6.2 lb VOC/day *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.3.12*

Last Update: 5/11/2022

Metal Products Coating - High Gloss, Air-Dried,= or < 30 lb/day Facility-wide VOC coating emissions *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.3.13*

Last Update: 8/16/2023

Metal Products Coating - Metal Frames and Exterior Wooden Wall Panels for Modular Buildings *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.3.14*

Last Update: 8/16/2023

Side Seam Stripe Spray Coating Operation for 3-Piece Metal Can Manufacturing at a Facility-wide Can Manufacturing Rate of >= 180,000 Can/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.3.15*

Last Update: 8/16/2023

Dip Coating of Steel Joists *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.3.16*

Last Update: 8/16/2023

Coated Steel Storage/Drying Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.3.17*

Last Update: 8/16/2023

"Bright Dip" Aluminum Surface Finishing Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.3.18*

Last Update: 8/16/2023

Metal Product Coating - Metal Rod Dip Coating, Air-Dried *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.4.1*

Last Update: 5/11/2022

Wood Products Coating Operation -Wood Products Coating Operation - Non-Continuous Batch Coating *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.4.2*

Last Update: 6/30/2022

Wood Products Coating Operation - Continuously-fed Booth, = or < 5000 square feet material coated/day

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Use HVLP or equivalent transfer efficiency application methods and coatings compliant with District Rule 4606	 -90% capture and 98% control using engineered capture system and thermal/catalytic incineration control system; OR -90% capture and 95% control using engineered capture system and carbon adsorption control system; OR -Use of Ultra Low VOC Materials (< 50 grams of VOC per liter of material); OR 	
PM10	Use spray booth with exhaust filters, and HVLP or equivalent transfer efficiency application methods compliant with District Rule 4606		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.4.3*

Last Update: 8/16/2023

Wood Products Coating Operation - Custom Replica Furniture, < or = 400 lb VOC/day *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.4.4*

Last Update: 5/11/2022

Wood Products Coating Operation - Exterior Wooden Wall Panels for Modular Buildings *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.5.1*

Last Update: 5/11/2022

Paper Roll-Coating - Heatset *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.5.2*

Last Update: 5/11/2022

Coating Operation - Large Concrete Structure Manufacturing, Outdoor Application *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.5.3*

Last Update: 5/11/2022

Coating Operation - Fiberglass Utility Poles, = or > 90 lb/day of VOC emissions *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.5.4*

Last Update: 5/11/2022

Plastic Parts and Products Coating *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.5.5*

Last Update: 8/16/2023

Coating Operation - Small Concrete Products *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.5.6*

Last Update: 4/8/2020

Coating Operation - Clay-Based, Cat Litter, Heat Dried

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Use of low VOC coating (0.69 lb/gal less water and exempt compounds) or less	1) Capture and control of VOCs using a thermal or catalytic incineration system	
		 Capture and control of VOCs using carbon adsorption 	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.5.7*

Last Update: 8/16/2023

Coating of Flat Sheet Glass (for non-transparent coatings) *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.5.8*

Last Update: 8/16/2023

Weatherproofing Coating Application (Electronic Components) *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.5.9*

Last Update: 8/16/2023

Vinyl Window and Patio Door Assembly Glazing Table *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.5.10*

Last Update: 8/16/2023

Glass Bottle Coating Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.5.11*

Last Update: 9/12/2022

Roof Tile Coating, Continuous Feed Booth

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Use of coating(s) with a VOC content of 0.8 lb/gal (less water and exempt compounds), or lower	Capture and control using an enclosed booth, or equivalent, and thermal incineration system	
PM10	Booth with an overspray capture system and HVLP spray equipment, or equal	Capture and control using an enclosed booth, or equivalent, and catalytic incineration system	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.6.1*

Last Update: 8/24/2018

Motor Vehicle Gasoline Storage and Dispensing Operation

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	CARB certified Phase I and Phase II vapor recovery system;		
	Or		
	CARB certified Phase I vapor recovery system AND a vehicle fleet where 100% of the vehicles are equipped with Onboard Refueling Vapor Recovery (ORVR) systems and the operator also owns the gasoline dispensing operation that serves the fleet AND CARB certified Non Vapor Recovery (NVR) Low Permeation (LP) hoses;		
	Or		
	CARB certified Phase I vapor recovery system and E85 fuel dispensing with no Phase II vapor recovery system.		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.6.3*

Last Update: 5/11/2022

Motor Vehicle Gasoline Storage and Dispensing Operation - Bulk plants with Diesel fuel switch loading *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.6.4*

Last Update: 8/24/2018

Non-Motor Vehicle Fuel Storage and Dispensing Operation

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
VOC	CARB certified Phase I vapor recovery system		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.6.5*

Last Update: 8/24/2018

Aviation Fuel Dispensing Facility

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
VOC	CARB certified Phase I vapor recovery system		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.6.6*

Last Update: 5/24/2018

LPG Cylinder Refilling System

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Use of CARB-certified low emission adaptor (maximum loss of 1.18 cc of LPG per disconnect)	1) 98% Capture and Control (Thermal Incineration, Catalytic Incineration, or equivalent)	
	,	2) 95% Capture and Control (Carbon Adsorption or equivalent)	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.7.1* Last Update: 2/1/2006

Broiler House

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	19% control 1) completely enclosed mechanical ventilated broiler housing with evaporative cooling pads, mixing fans, and a computer control system using thermostats, sensors, and timers to control environmental conditions; all birds fed in accordance with NRC or other District-approved guidelines; houses completely cleaned out at least twice per year; and all mortality removed from houses twice per day	 98% control (capture and thermal incineration) 95% control (capture and catalytic incineration) 95% control (capture and carbon adsorption) 80% control (capture and biofiltration) 	
	OR		
	2) acidifying litter amendments; all birds fed in accordance with NRC or other District-approved guidelines; and all mortality removed from houses twice per day		

NH3 55% control

80% control (capture and biofiltration)

1) completely enclosed mechanical ventilated broiler housing with evaporative cooling pads, mixing fans, and a computer control system using thermostats, sensors, and timers to control environmental conditions; all birds fed in accordance with NRC or other District-approved guidelines; houses completely cleaned out at least twice per year; and all mortality removed from houses twice per day

OR

2) acidifying litter amendments; all birds fed in accordance with NRC or other District-approved guidelines; and all mortality removed from houses twice per day

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.7.2*

Last Update: 8/16/2023

Offset Lithographic Printing - Non-heat set Press *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.7.3*

Last Update: 12/22/2003

Flexographic Printer/Gluer - Corrugated Box **Invalid; See 4.9.12**

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
VOC	the use of inks with VOC content not exceeding 0.3 lb/gal (less water and exempts solvents) and the use of adhesives not exceeding 0.06 lb/gal (less water and exempt solvents)	 1. VOC capture and thermal incineration 2. VOC capture and carbon adsorption 	

BACT 4.9.12 replaces 4.7.3

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.7.4*

Last Update: 8/16/2023

Flexographic Printing - Corrugated Boxes, High End Graphics *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.7.5*

Last Update: 5/11/2022

Flexographic printing - Heatset inks on low-porosity glossy paper and plastic film *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.7.6*

Last Update: 5/11/2022

Screen Printer with natural gas-fired dryer *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.7.7*

Last Update: 8/16/2023

Screen Print - Ultraviolet (UV) coating with Curing Lamp(s) *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.7.8*

Last Update: 5/11/2022

Printing Operation - Data and Communication Cable Insulation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.7.9*

Last Update: 5/11/2022

Flexographic Printer - High-end graphics printing on Clay coated Paper, = or < 23 tons VOC/year *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.7.10*

Last Update: 4/27/2020

Printing Plate Manufacturing

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Use of processor solvents with a VOC content, less	1) VOC capture and thermal oxidation	
	water and exempt compounds, of 7.3 lb/gal, or	2) VOC capture and catalytic oxidation	
	lower, and practicing evaporation minimization methods, which include keeping all solvents and solvent-laden cloths/papers, not in active use, in closed containers	3) VOC capture and carbon adsorption	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.7.11*

Last Update: 8/16/2023

Rotogravure Printing Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.7.12*

Last Update: 8/16/2023

Flexographic Printing - High-end graphics, Heat-set Inks, on High-Porosity Material *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.7.13*

Last Update: 8/16/2023

Glass and Plastic Bottle Printing – Heat-dried *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.7.14*

Last Update: 8/16/2023

Flexographic UV Printing - High End Printing of Labels, Tags, and Forms *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.7.15*

Last Update: 8/16/2023

Flexographic Printing - Corrugated Boxes, Low-end Graphics *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.7.16*

Last Update: 8/16/2023

Rotogravure Printing Operation Low Porosity Substrate - High End Graphics *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.1*

Last Update: 4/27/2020

Fiberglass Boat Manufacturing (< 120 gallons/day and < 25 tons VOC per year)

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	For gel coats: air assisted airless application (or equivalent) and comply with District Rule 4684 monomer VOC content limits	 98% total control efficiency (thermal/catalytic incineration and 100% capture) 95% total control efficiency (carbon adsorption and 100% capture system) 	
	For resins, any of the following application methods: 1) non-atomized spray technique (such as the use of fluid impingement technology (FIT) spray guns), 2) flowcoaters, 3) pressure-fed rollers, 4) resin impregnators, 5) hand lay- up, or 6) any equivalent method as approved by the APCO; and comply with District Rule 4684 monomer VOC content limits	 3) 63.7% total control efficiency (thermal/catalytic incineration and hood vent with 65% capture) 4) 61.7% total control efficiency (carbon adsorption and hood vent with 65% capture) 	
PM10	For gel coats, air assisted airless application (or equivalent) and an enclosed spray booth with filters rated at 95% or greater PM10 control efficiency		
	For resins, any of the following application methods: 1) non-atomized spray technique (such as the use of fluid impingement technology (FIT) spray guns), 2) Flowcoaters, 3) Pressure-fed rollers, 4) resin impregnators, 5) hand lay- up, 6) or any equivalent method as approved by the APCO		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.2*

Last Update: 12/28/2021

Polyester Resin Products - Synthetic Marble Casting

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	VOC capture and control with thermal incineration with 90% overall capture and control by weight	VOC capture and control with thermal incineration or equivalent with 95% overall capture and control by weight	
PM10	Spray booth with exhaust filters and HVLP or equivalent application equipment as specified in Rule 4684 (Polyester Resin Operations)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.3*

Last Update: 5/11/2022

Polyester Resin Products - Compression Molding of Plumbing Fixtures with fillers mixed in a closed system, = or < 2,900 gallons resin/day *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.4*

Last Update: 5/11/2022

Polyester Resin Products - Gel Coating of Plumbing Fixtures = or < 100 gallon resin/day *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.5*

Last Update: 8/16/2023

Polyester Resin Products - Chop Spray, Spray, and Hand Lay-Up, < or = 600 gallons resin/day *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.6*

Last Update: 5/11/2022

Fiberglass Products Manufacturing - Utility Poles, = or < 6,000 lb/day of raw resin *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.7*

Last Update: 5/11/2022

Fiberglass Products Manufacturing - Fiberglass Mat Dryer and Curing Oven *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.8*

Last Update: 3/24/2021

Polyester Resin Application - Boat and Marine Vessel Repair Operations (Pleasure Crafts Only)

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Use of corrosion resistant resins with no more than 46% monomer by weight and use of specialty gelcoats with no more than 48% monomer by weight	 1) VOC capture and control (thermal incineration, catalytic incineration, or equal) with a minimum overall control efficiency of 98% 2) VOC capture and control (carbon adsorption or equal) with a minimum overall control efficiency of 95% 	
PM10	For resins: Use of manual non-atomized application methods, or equivalent		
	For gelcoats: Use of an enclosed spray booth with particulate filters and HVLP application equipment, or equivalent		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.9*

Last Update: 5/11/2022

Fiberglass Products Manufacturing - Fiberglass Mat Forming *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.10*

Last Update: 12/30/2020

Expandable Polystyrene (EPS) Molding Operation -Pre-expander Unit

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
VOC	Capture and Thermal Oxidation or equivalent (98% control efficiency)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.11*

Last Update: 5/11/2022

Polyester Resin Application - Concrete Block Surface Laminating, = or < 4000 Blocks laminated/day *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.12*

Last Update: 6/9/2020

Expanded Polystyrene (EPS) Products - Reclaim Extrusion Line

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
VOC	Capture and Thermal Oxidation or equivalent (98% control efficiency)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.13*

Last Update: 8/16/2023

Polyethylene Foam Extrusion Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.14*

Last Update: 8/16/2023

Expanded Polystyrene Products - Fluff Storage Silo, = or < 18 tons of foam /day *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.15*

Last Update: 8/16/2023

Existing Polystyrene Foam Sheet Extrusion Operation – Using VOC Blowing Agents to Produce Food Service Products. *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.16*

Last Update: 8/16/2023

Polyvinyl chloride (PVC) Products Manufacturing - Material Blending Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.17*

Last Update: 8/16/2023

Polyethylene Products Manufacturing - Rotational Molding Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.18*

Last Update: 8/16/2023

Expanded Polystyrene Foam Products - Vertical, water-quenched extruder; food-grade products. *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.19*

Last Update: 8/16/2023

Fiberglass-reinforced Composite Products – Pultruded, heat set resin products. *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.20*

Last Update: 8/26/2020

No-Bake Mold Manufacturing

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Binders: less than or equal to 0.07 lb-VOC/lb-binder	1) VOC capture and control with thermal oxidizer	
	Release Agents: less than or equal to 0.9 lb-VOC/lb- agent	2) VOC capture and control with carbon adsorption	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.21*

Last Update: 6/11/2021

Corrosion-Resistant Polyester Resin Application

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Resin containing ≤ 46% monomer by weight	VOC Capture and control with thermal incineration (98% control)	
	Mechanical non-atomizing resin application	VOC Capture and control with catalytic incineration (98% control)	
	Enclosed gun cleaner	VOC Capture and control with carbon adsorption (95% control)	
PM10	Spray booth with exhaust filter and mechanical non- atomizing resin application		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.22*

Last Update: 2/14/2019

Polyisocyanurate (PIR) Insulated Panel Manufacturing Operation Consisting of Pentamat, Laminator, and Panel Saws

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Use of pentane or equivalent blowing agent with a low global warming potential and a maximum VOC emission rate of 0.045 lb-VOC/lb-blowing agent used	 At least 98% overall capture and control using a properly designed capture system served by a thermal/catalytic oxidizer, or other equivalent control achieving device or technology At least 95% overall capture and control using a properly designed capture system served by a carbon adsorption system, or other equivalent control achieving device or technology 	
PM10	Panel sawing equipment served by a fabric filter dust collector or equivalent with 99% capture and control		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.23*

Last Update: 8/16/2023

Finished Polyisocyanurate Product Storage Area *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.24*

Last Update: 8/21/2020

Fiberglass Mold Manufacturing (Tooling) Operation

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Non-atomizing polyester resin application equipment, gel coat application equipment compliant with District Rule 4684, and tooling resins and gel coats with monomer VOC content compliant with District Rule 4684	 Capture and control with thermal or catalytic incineration - 98% control Capture and control with carbon adsorption - 95% control 	Closed Molding
PM10	Spray booth with exhaust filters, non-atomizing polyester resin application equipment, and gel coat application equipment compliant with District Rule 4684		Closed Molding

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.25*

Last Update: 4/23/2020

Pneumatic Conveying - PVC Material

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
PM10	99% control (baghouse or equivalent)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.8.26*

Last Update: 5/31/2018

Finished Polyethylene Product Storage Area

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
VOC	98% Capture and Control (100% Capture with Permanent Total Enclosure and 98% Control with Regenerative Thermal Oxidizer, or equal)	99% Capture and Control (100% Capture with Permanent Total Enclosure and 99% Control with Regenerative Thermal Oxidizer, or equal)	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.9.1*

Last Update: 8/21/2020

Adhesives Application - Tire Retreading

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC cont per liter (l	Use of adhesives with a VOC content of 100 gram per liter (less water and	1) Use of adhesives with zero VOC content	
	exempt compounds)	 Capture of VOCs and thermal or catalytic oxidation or equivalent achieving 98% control 	
		 Capture of VOCs and carbon adsorption or equivalent achieving 95% control 	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.9.2*

Last Update: 5/11/2022

Adhesive Application Operation - Rubber Parts and Products, Brush Applied *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.9.3*

Last Update: 5/11/2022

Adhesive Application Process - Foam Products *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.9.4*

Last Update: 8/16/2023

Adhesive Application Process - Non-Porous Materials, Specialty Contact Adhesives, Spray Application *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.9.5*

Last Update: 5/11/2022

Adhesive Application Process - Wooden case manufacturing *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.9.6*

Last Update: 6/10/2021

Food-Grade Carton Manufacturing - Specialty Flexographic Printing and Coatings Application

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Inks and Coatings: Water- based or UV or EB (Electro Beam) inks with VOC content < 1.5 lb/gal (180 g/l) or < 10% by volume	1. Capture and vent VOC to afterburner or carbon adsorption system with ≥ 98.5% destruction/recovery efficiency, OR VOC outlet ≤ 10 ppmv	
	Solvents: Zero VOC	2. Water-based inks with VOC content < 1 lb/gal (120 g/l)	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.9.7*

Last Update: 8/16/2023

Corrugated PVC Sheet Products - Special Contact Adhesive, Roller Applied *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.9.8*

Last Update: 8/16/2023

Adhesive Application Process – Wooden Door Assembly, Roller applied *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.9.9*

Last Update: 8/16/2023

Adhesive Application Process - Vinyl Door and Window Assembly, Non-Spray Applied *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.9.10*

Last Update: 8/16/2023

Adhesive Application for Multi-Wall Packaging Manufacturing *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.9.11*

Last Update: 8/16/2023

Adhesive Application Operation - Bonding of Fiberglass Boat Hulls and Decks, Non-Atomizing Application *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.9.12*

Last Update: 8/29/2018

Corrugated Box Gluer

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Use of adhesives with a	1. VOC Capture and Thermal/Catalytic	
	VOC content of 0.021 lb- VOC/gal (less water and	Oxidation	
	exempt compounds)	2. VOC Capture and Carbon Adsorption	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.9.13*

Last Update: 8/29/2018

Corrugated Board Manufacturing (Corrugator)

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Steam conditioning of paper - 3.5 lb-VOC/10^6 sq ft;	1. VOC Capture and Thermal/Catalytic Oxidation	
	Adhesives - 0.015 lb- VOC/gal (less water and exempt compounds)	2. VOC Capture and Carbon Adsorption	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.9.14*

Last Update: 6/6/2019

Wood Parts and Products Subfloor Adhesive Application Operation

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Use of adhesives and solvents with a VOC content and application methods compliant with District Rule 4653 (Adhesives and Sealants)	1) At least 98% overall capture and control using a properly designed capture system served by a thermal/catalytic oxidizer, or other equivalent control achieving device or technology	
		2) At least 95% overall capture and control using a properly designed capture system served by a carbon adsorption system, or other equivalent control achieving device or technology	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.10.1*

Last Update: 5/11/2022

Parts Cleaner - Electrical Components, Isopropyl Alcohol, = or > 440 sq. in. surface area of isopropyl alcohol *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.10.2*

Last Update: 5/11/2022

Cold cleaner/degreaser - Metal Products, Batch Loaded, = or < 1 gal/day solvent usage *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.10.3*

Last Update: 8/16/2023

Parts Cleaner - Rubber Parts and Products *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.10.4*

Last Update: 5/11/2022

Parts Cleaner/degreaser - Automotive Parts, Portable unit, < 10 Gallon remote reservoir *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.10.5*

Last Update: 5/28/2020

Medical Grade Silicon Products - Wipe Cleaning Operation

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
VOC	Use of solvents with VOC content (less water and exempt compounds) of 7.2 lb/gal, or lower, and evaporative minimization methods, which include: - use of controlled flow dispensers (e.g. squeeze bottles) and - keeping all cloth/papers and solvent, which are not in active use, stored in closed containers	 Capture and control using an enclosed booth and thermal/catalytic oxidation system Capture and control using a hood and thermal/catalytic oxidation system 	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.10.6*

Last Update: 8/16/2023

Metal Parts, Open-top, Powder Coating Stripping Tank *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.10.7*

Last Update: 8/16/2023

Metal Parts and Products Cleaning - Open-top, Heated, Vapor Degreaser *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.11.1*

Last Update: 4/28/2020

Tire Manufacturing - Steel Belt Milling/Calendar (no cementing/gluing performed)

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC		1) Thermal incineration (with 65% to 90% estimated capture efficiency)	
		2) Carbon adsorption (with 65% to 90% estimated capture efficiency)	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.11.2*

Last Update: 4/21/2020

Non-woven Polyester Foam Production - = or < 1800 lb Foam/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.11.3*

Last Update: 5/21/2020

Cardboard Box Laminator

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Use of adhesive with a VOC content of 0.021 lb/gal (less	1) VOC Capture and Regenerative Thermal/Catalytic Oxidation	
	water and exempt compounds)	2) VOC Capture and Carbon Adsorption	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.11.4*

Last Update: 5/11/2022

Organic Liquid Storage Tanks - Non-petroleum and non-petrochemical facilities, = or < 19,800 gallons capacity *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.11.5*

Last Update: 4/21/2020

Circuit Board Manufacturing - Soldermask Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.11.6*

Last Update: 5/11/2022

Railcar Unloading - Transfer of Non-petroleum Organic Liquids into Delivery Vehicles *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.11.7*

Last Update: 8/16/2023

Shop Towel Laundering Consisting of Sorting Tables, Washing Machines, and Wastewater Treatment System *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.11.8*

Last Update: 12/29/2021

Rubber Tire Retreading - Curing Chamber (autoclave)

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC		1) VOC capture and control with thermal or catalytic incineration (98% control)	
		2) VOC capture and control with carbon adsorption (95% control)	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.11.9*

Last Update: 4/30/2020

Rubber Tire Retreading - Buffing Operation (Tread Removal)

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC		1) VOC capture and control with thermal or catalytic incineration (98% control)	
		2) VOC capture and control with carbon adsorption (95% control)	
PM10	Water spray at rasp, and vacuum system ducted to a dust collector with 99% control		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.11.10*

Last Update: 8/16/2023

Circuit Board Manufacturing – Flux Application for Wave Soldering Machine *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.11.11*

Last Update: 7/2/2020

Fructose Reclamation System - Process Vent *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.12.1*

Last Update: 8/16/2023

Chemical Plants - Valves & Connectors *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.12.2*

Last Update: 8/16/2023

Chemical Plants Pump and Compressor Seals *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.12.3*

Last Update: 8/28/2019

Chemical Evaporator/Dryer/Oven

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC Minimize VOC emissions units best management practises		1. Incineration System - RTO/Catalytic Oxidizer	
		2. Incineration System - Ultra Low-NOx Flare	
		3. Carbon Adsorption	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.12.4*

Last Update: 7/8/2020

Ethanol Fermentation Process Tanks Including: Fermentation Tanks and Beerwell Storage Tanks

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
VOC	99.5% VOC emissions control efficiency (fermentation wet scrubber vented to a CO2 recovery plant with a condenser and a high pressure scrubber; or equivalent)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.12.5*

Last Update: 8/16/2023

Emission Units (Excluding Wet Cake Dryer) Involved in the Ethanol Distillation and Wet Cake Process *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.12.6*

Last Update: 8/16/2023

Ethanol Manufacturing Facility Distillers Dried Grains with Solubles (DDGS) Dryer *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.12.7*

Last Update: 8/16/2023

Distillers Dried Grains with Solubles (DDGS) Cooler *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.12.8*

Last Update: 8/16/2023

Ethanol Wet Cake Storage and Loadout Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.12.9*

Last Update: 8/16/2023

Ethanol Production: Solar Drying of Distillers Cake *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.