Dry Cleaner - Perchloroethylene, Closed Loop with Primary and Secondary Controls *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Petroleum Solvent Dry Cleaning

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Closed-loop (ventless), dry-to-dry machine with a refrigerated vapor condenser (or equivalent) and operated in compliance with District Rule 4672</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Automotive Spray Painting Operation, < 5.0 MMBtu/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.2.2*

Group II Vehicles Spray Painting Operation - Vehicles requiring a Color Match

RESCINDED

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.2.3*

Last Update: 9/12/2022

Mobile Equipment Coating Operation - Multiple Location, <= 20,000 lb-VOC/year
RESCINDED

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Mobile Equipment Coating Operation

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
</table>
| VOC | Use of coatings and application methods compliant with District Rule 4612 | 1. Thermal/Catalytic Incineration (98% capture and control)
2. Carbon Adsorption (95% capture and control) (Tech Feasible) | |
| PM10 | 1. Coating application methods compliant with District Rule 4612;
2. Spray Booth with exhaust filters; 95% control efficiency | | |

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.2.5*

Limited Aircraft Coating Operation - Maintenance and Refinishing of Metal Parts on Aircraft, < 20 Gallons/day

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Using coatings compliant with SJVAPCD Rule 4605, except for the following coatings: Anticrash coatings < or = 420 g/l; high temperature coatings < or = 420 g/l; radiation effect coatings < or = 600 g/l; and metalized epoxy coatings < or = 700 g/l. HVLP application method or equivalent, and an enclosed gun cleaner or equivalent</td>
<td>1) 98% control (capture and control with thermal or catalytic oxidizer, or equal)</td>
<td>2) 95% control (capture and control with carbon adsorption, or equal)</td>
</tr>
<tr>
<td>PM10</td>
<td>HVLP application method or equivalent</td>
<td>Enclosed spray booth with dry filters and use of HVLP application equipment</td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.2.6*

Last Update: 9/27/2021

Aerospace Parts Coating Operation

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>The use of coatings, cleaning materials, and solvents compliant with District Rule 4605 and use of HVLP application equipment</td>
<td>1) Thermal Oxidation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Catalytic Oxidation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) Carbon Adsorption</td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>Enclosed paint booth with dry filters and use of HVLP application equipment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Solid Dry Film Based Lubricant Coating Operations for Metal Parts and Products and Aerospace Assembly and Components

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Solvent-based solid film lubricant coatings with a VOC content, as applied, of 6.44 lb VOC/gal (excluding water and exempt solvents) or lower</td>
<td>1) VOC capture and thermal incineration system</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) VOC capture and catalytic incineration system</td>
<td>3) VOC capture and carbon adsorption system</td>
</tr>
<tr>
<td>PM10</td>
<td>Enclosed paint spray booth with dry filters and use of HVLP gun or equivalent application equipment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.2.8*
Last Update: 12/29/2021

Recreational Marine Vessel (Pleasure Craft) Coating

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Use of materials with VOC contents (less water and exempt compounds) as indicated, or lower: - antifouling coatings: aluminum substrate - 440 g/l, other substrates - 330 g/l, - high gloss coatings: 340 g/l** - extreme high gloss coatings: 490 g/l*** - pretreatment wash primers: 420 g/l - primers: 340 g/l - all other coatings: 340 g/l</td>
<td>1. VOC capture and control (thermal incineration, catalytic incineration, or equal) with a minimum overall control efficiency of 98%.</td>
<td>2. VOC capture and control (carbon adsorption or equal) with a minimum overall control efficiency of 95%</td>
</tr>
<tr>
<td>PM10</td>
<td>Enclosed paint spray booth with particulate filters and HVLP application equipment (or equivalent)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**High gloss coating: any coating that achieves at least 85% reflectance on a 60 degree meter when tested by ASTM Method D-523.
***Extreme high gloss coating: any coating that achieves at least 95% reflectance on a 60 degree meter when tested by ASTM Method D-523.

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.2.9

This is a Summary Page for this Class of Source

Aerospace Parts Coating Operation - Plasma Spray Application

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>= or > 99.97% Control Efficiency (HEPA filtration system, MERV 17 filtration system, or equivalent)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Motor Vehicle Chassis Coating Operation - Electrodeposition with Curing Oven

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>95% control (VOC capture and control system serving the coating tank and curing oven. Capture system vented to a thermal/catalytic oxidizer, or equal)</td>
<td>Ultra-low VOC coating, coatings with VOC content of 0.08 lb/gal or less (less water and exempt compounds)</td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.2.11

Motor Vehicle Assembly (OEM) Adhesives Application Operation - Glass Installation (Non-Spray Application)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC Adhesives with a VOC content ≤ 250 g/l;</td>
<td>1) Thermal/Catalytic Incineration (98% capture and control)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesive Primers with a VOC content ≤ 700 g/l</td>
<td>2) Carbon Adsorption (95% capture and control)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.2.12
Last Update: 4/30/2018

Small Scale Motor Vehicle Assembly (OEM) Coating Operation with a Booth Heater, < 2,000 lb-VOC/year

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Coatings compliant with District Rule 4602</td>
<td>1) Thermal/Catalytic Incineration (98% capture and control)</td>
<td>2) Carbon Adsorption (95% capture and control)</td>
</tr>
<tr>
<td>PM10</td>
<td>Spray Booth with Exhaust Filters (95% control efficiency)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.3.1*
Last Update: 5/11/2022

Metal Parts and Products Coating - Air Dried (excluding specialty coating as defined in Rule 4603) *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.3.2*
Last Update: 5/11/2022

Metal Parts and Products Coating - Heat Dried *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.3.3
Last Update: 2/22/1995

Metal Product Coating - Metal Rod Dip Coating, Air-Dried, = or > 150 gallons/month coating **RESCINDED 10/4/11; SEE 4.3.18

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Dip coating with low VOC content of 3.5 lb/gallon (less water and exempt compounds), Dip tank covered when not in use</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.3.4*

Last Update: 6/1/1995

Metal Product Coating - Limited Metal Rod Dip Coating, Air-Dried, < or = 15 lb/day Facility VOC coating emissions **RESCINDED 10/4/11; SEE 4.3.18

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Dip coating with VOC content of 6.2 lb/gallon, and dip tank covered when not in use</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.3.5*

Last Update: 4/21/2020

Metal Parts and Products Coating Operations (using specialty coatings as defined by Rule 4603) *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.3.6*

Last Update: 8/16/2023

Metal Products Coating - Shipping/Storage Containers *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Powder Coating Operation with Curing Oven

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
</table>
| VOC | Low VOC content coating with < 1.5% by weight, and use natural gas-fired curing oven | 1) Thermal or Catalytic Incineration
2) Carbon Adsorption |
| SOX | Use natural gas-fired curing oven |
| PM10 | Enclosed booth with 99% control efficiency, and use natural gas-fired curing oven |
| NOX | Use natural gas-fired curing oven |
| CO | Use natural gas-fired curing oven |

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.3.8*
Last Update: 8/16/2023

Metal Product Coating - Large Steel Structures, < 64 lb VOC/day, Outdoor Coating Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.3.9

Last Update: 12/30/2020

Metal Product Coating - Large Steel Structures, Indoor Operation

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
</table>
| VOC | Use of low VOC coatings (2.5 lb/gal less water and exempt compounds) and HVLP spray gun(s) or equivalent application method | 1) Thermal incineration using coatings with a low VOC content (2.5 lb/gal less water and exempt compounds) and total enclosure (98% Control)
2) Catalytic incineration using coatings with a low VOC content (2.5 lb/gal less water and exempt compounds) and total enclosure (98% Control)
3) Carbon adsorption using coatings with a low VOC content (2.5 lb/gal less water and exempt compounds) and total enclosure (95% Control) | |
| PM10 | HVLP Spray Gun(s) | Enclosed painting operation with filter(s) on exhaust vent (90% Control) | |

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.3.10*

Last Update: 12/29/2021

Metal Products Coating of Sheet Metal for Can Manufacturing at a Major Source for VOC

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>VOC capture and control (thermal incineration) with overall efficiency of at least 98.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>Dryer: 20 ppmv @ 3% O2 (Low-NOx Burner or equivalent)</td>
<td>Dryer: 9 ppmv @ 3% O2 (Ultra-Low NOx burner or equivalent)</td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.3.11*
Last Update: 5/11/2022

Metal Products Coating - Touch-up, 6.2 lb VOC/day *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.3.12*
Last Update: 5/11/2022

Metal Products Coating - High Gloss, Air-Dried, = or < 30 lb/day Facility-wide
VOC coating emissions *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.3.13*

Last Update: 8/16/2023

Metal Products Coating - Metal Frames and Exterior Wooden Wall Panels for Modular Buildings *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Side Seam Stripe Spray Coating Operation for 3-Piece Metal Can Manufacturing at a Facility-wide Can Manufacturing Rate of >= 180,000 Can/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.3.15*

Dip Coating of Steel Joists *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
"Bright Dip" Aluminum Surface Finishing Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Metal Product Coating - Metal Rod Dip Coating, Air-Dried *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.4.1*
Last Update: 5/11/2022

Wood Products Coating Operation -
Wood Products Coating Operation - Non-Continuous Batch Coating
RESCINDED

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.4.2

Last Update: 6/30/2022

Wood Products Coating Operation - Continuously-fed Booth, = or < 5000 square feet material coated/day

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Use HVLP or equivalent transfer efficiency application methods and coatings compliant with District Rule 4606</td>
<td>-90% capture and 98% control using engineered capture system and thermal/catalytic incineration control system; OR -90% capture and 95% control using engineered capture system and carbon adsorption control system; OR -Use of Ultra Low VOC Materials (< 50 grams of VOC per liter of material); OR</td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>Use spray booth with exhaust filters, and HVLP or equivalent transfer efficiency application methods compliant with District Rule 4606</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.4.3*
Last Update: 8/16/2023

Wood Products Coating Operation - Custom Replica
Furniture, < or = 400 lb VOC/day *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.4.4*

Last Update: 5/11/2022

Wood Products Coating Operation - Exterior Wooden Wall Panels for Modular Buildings *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.5.1*

Last Update: 5/11/2022

Paper Roll-Coating - Heatset *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.5.2*
Last Update: 5/11/2022

Coating Operation - Large Concrete Structure Manufacturing,
Outdoor Application *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.5.3*
Last Update: 5/11/2022

Coating Operation - Fiberglass Utility Poles, = or > 90 lb/day of VOC emissions
RESCINDED

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.5.5*

Last Update: 8/16/2023

Coating Operation - Small Concrete Products *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.5.6*

Last Update: 4/8/2020

Coating Operation - Clay-Based, Cat Litter, Heat Dried

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Use of low VOC coating (0.69 lb/gal less water and exempt compounds) or less</td>
<td>1) Capture and control of VOCs using a thermal or catalytic incineration system</td>
<td>2) Capture and control of VOCs using carbon adsorption</td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Coating of Flat Sheet Glass (for non-transparent coatings) *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.5.8*

Last Update: 8/16/2023

Weatherproofing Coating Application (Electronic Components) *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.5.9*

Last Update: 8/16/2023

Vinyl Window and Patio Door Assembly Glazing Table *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.5.10*
Last Update: 8/16/2023

Glass Bottle Coating Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Roof Tile Coating, Continuous Feed Booth

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Use of coating(s) with a VOC content of 0.8 lb/gal (less water and exempt compounds), or lower</td>
<td>Capture and control using an enclosed booth, or equivalent, and thermal incineration system</td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>Booth with an overspray capture system and HVLP spray equipment, or equal</td>
<td>Capture and control using an enclosed booth, or equivalent, and catalytic incineration system</td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.6.1*

Motor Vehicle Gasoline Storage and Dispensing Operation

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>CARB certified Phase I and Phase II vapor recovery system; Or CARB certified Phase I vapor recovery system AND a vehicle fleet where 100% of the vehicles are equipped with Onboard Refueling Vapor Recovery (ORVR) systems and the operator also owns the gasoline dispensing operation that serves the fleet AND CARB certified Non Vapor Recovery (NVR) Low Permeation (LP) hoses; Or CARB certified Phase I vapor recovery system and E85 fuel dispensing with no Phase II vapor recovery system.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Motor Vehicle Gasoline Storage and Dispensing Operation - Bulk plants with Diesel fuel switch loading *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.6.4

This is a Summary Page for this Class of Source

Non-Motor Vehicle Fuel Storage and Dispensing Operation

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>CARB certified Phase I vapor recovery system</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.6.5

Last Update: 8/24/2018

Aviation Fuel Dispensing Facility

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>CARB certified Phase I vapor recovery system</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

**Best Available Control Technology (BACT) Guideline 4.6.6*
Last Update: 5/24/2018**

LPG Cylinder Refilling System

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
</table>
| VOC | Use of CARB-certified low emission adaptor (maximum loss of 1.18 cc of LPG per disconnect) | 1) 98% Capture and Control (Thermal Incineration, Catalytic Incineration, or equivalent)
2) 95% Capture and Control (Carbon Adsorption or equivalent) | |

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.7.1*

Last Update: 2/1/2006

Broiler House

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>19% control</td>
<td>1) 98% control (capture and thermal incineration)</td>
<td>2) 95% control (capture and catalytic incineration)</td>
</tr>
<tr>
<td></td>
<td>1) completely enclosed mechanical ventilated broiler housing with evaporative cooling pads, mixing fans, and a computer control system using thermostats, sensors, and timers to control environmental conditions; all birds fed in accordance with NRC or other District-approved guidelines; houses completely cleaned out at least twice per year; and all mortality removed from houses twice per day</td>
<td>3) 95% control (capture and carbon adsorption)</td>
<td>4) 95% control (capture and carbon adsorption)</td>
</tr>
<tr>
<td>OR</td>
<td>2) acidifying litter amendments; all birds fed in accordance with NRC or other District-approved guidelines; and all mortality removed from houses twice per day</td>
<td>4) 80% control (capture and biofiltration)</td>
<td></td>
</tr>
</tbody>
</table>

4.7.1
BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.7.3*

Last Update: 12/22/2003

Flexographic Printer/Gluer - Corrugated Box **Invalid; See 4.9.12

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>the use of inks with VOC content not exceeding 0.3 lb/gal (less water and exempts solvents) and the use of adhesives not exceeding 0.06 lb/gal (less water and exempt solvents)</td>
<td>1. VOC capture and thermal incineration 2. VOC capture and carbon adsorption</td>
<td></td>
</tr>
</tbody>
</table>

BACT 4.9.12 replaces 4.7.3

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.7.4*

Last Update: 8/16/2023

Flexographic Printing - Corrugated Boxes, High End Graphics *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.7.5*
Last Update: 5/11/2022

Flexographic printing - Heatset inks on low-porosity
glossy paper and plastic film *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.7.6*

Last Update: 5/11/2022

Screen Printer with natural gas-fired dryer *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.7.7*

Last Update: 8/16/2023

Screen Print - Ultraviolet (UV) coating with Curing Lamp(s) *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.7.8*

Last Update: 5/11/2022

Printing Operation - Data and Communication Cable Insulation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.7.9*
Last Update: 5/11/2022

Flexographic Printer - High-end graphics printing on Clay coated Paper, = or < 23 tons VOC/year *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.7.10

Printed Plate Manufacturing

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Use of processor solvents with a VOC content, less water and exempt compounds, of 7.3 lb/gal, or lower, and practicing evaporation minimization methods, which include keeping all solvents and solvent-laden cloths/papers, not in active use, in closed containers</td>
<td>1) VOC capture and thermal oxidation</td>
<td>2) VOC capture and catalytic oxidation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3) VOC capture and carbon adsorption</td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.7.11*
Last Update: 8/16/2023

Rotogravure Printing Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.7.12*
Last Update: 8/16/2023

Flexographic Printing - High-end graphics, Heat-set
Inks, on High-Porosity Material *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Flexographic UV Printing - High End Printing of Labels, Tags, and Forms

RESCINDED

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.7.15*
Last Update: 8/16/2023

Flexographic Printing - Corrugated Boxes, Low-end Graphics *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Rotogravure Printing Operation Low Porosity Substrate - High End Graphics
RESCINDED

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.8.1*
Last Update: 4/27/2020

Fiberglass Boat Manufacturing (< 120 gallons/day and < 25 tons VOC per year)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>For gel coats: air assisted airless application (or equivalent) and comply with District Rule 4684 monomer VOC content limits</td>
<td>1) 98% total control efficiency (thermal/catalytic incineration and 100% capture)</td>
<td>2) 95% total control efficiency (carbon adsorption and 100% capture system)</td>
</tr>
<tr>
<td></td>
<td>For resins, any of the following application methods: 1) non-atomized spray technique (such as the use of fluid impingement technology (FIT) spray guns), 2) flowcoaters, 3) pressure-fed rollers, 4) resin impregnators, 5) hand lay-up, or 6) any equivalent method as approved by the APCO; and comply with District Rule 4684 monomer VOC content limits</td>
<td>3) 63.7% total control efficiency (thermal/catalytic incineration and hood vent with 65% capture)</td>
<td>4) 61.7% total control efficiency (carbon adsorption and hood vent with 65% capture)</td>
</tr>
<tr>
<td>PM10</td>
<td>For gel coats, air assisted airless application (or equivalent) and an enclosed spray booth with filters rated at 95% or greater PM10 control efficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For resins, any of the following application methods: 1) non-atomized spray technique (such as the use of fluid impingement technology (FIT) spray guns), 2) Flowcoaters, 3) Pressure-fed rollers, 4) resin impregnators, 5) hand lay-up, 6) or any equivalent method as approved by the APCO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.8.2*

Polyester Resin Products - Synthetic Marble Casting

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>VOC capture and control with thermal incineration with 90% overall capture and control by weight</td>
<td>VOC capture and control with thermal incineration or equivalent with 95% overall capture and control by weight</td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>Spray booth with exhaust filters and HVLP or equivalent application equipment as specified in Rule 4684 (Polyester Resin Operations)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.8.3*
Last Update: 5/11/2022

Polyester Resin Products - Compression Molding of Plumbing
Fixtures with fillers mixed in a closed system, = or < 2,900 gallons resin/day
RESCINDED

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Polyester Resin Products - Gel Coating of Plumbing Fixtures = or < 100 gallon resin/day *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Polyester Resin Products - Chop Spray, Spray, and Hand Lay-Up, < or = 600 gallons resin/day *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Fiberglass Products Manufacturing - Utility Poles,
= or < 6,000 lb/day of raw resin *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.8.7*
Last Update: 5/11/2022

Fiberglass Products Manufacturing - Fiberglass Mat Dryer
and Curing Oven *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Polyester Resin Application - Boat and Marine Vessel Repair Operations
(Pleasure Crafts Only)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
</table>
| VOC | Use of corrosion resistant resins with no more than 46% monomer by weight and use of specialty gelcoats with no more than 48% monomer by weight | 1) VOC capture and control (thermal incineration, catalytic incineration, or equal) with a minimum overall control efficiency of 98%
2) VOC capture and control (carbon adsorption or equal) with a minimum overall control efficiency of 95% | |
| PM10 | For resins: Use of manual non-atomized application methods, or equivalent
For gelcoats: Use of an enclosed spray booth with particulate filters and HVLP application equipment, or equivalent | |

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.8.9*
Last Update: 5/11/2022

Fiberglass Products Manufacturing - Fiberglass Mat Forming *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.8.10

Last Update: 12/30/2020

Expandable Polystyrene (EPS) Molding Operation - Pre-expander Unit

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Capture and Thermal Oxidation or equivalent (98% control efficiency)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.8.11*
Last Update: 5/11/2022

Polyester Resin Application - Concrete Block Surface
Laminating, = or < 4000 Blocks laminated/day *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.8.12

Last Update: 6/9/2020

Expanded Polystyrene (EPS) Products - Reclaim Extrusion Line

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Capture and Thermal Oxidation or equivalent (98% control efficiency)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Expanded Polystyrene Products - Fluff Storage Silo, = or < 18 tons of foam /day

RESCINDED

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.8.15*
Last Update: 8/16/2023

Existing Polystyrene Foam Sheet Extrusion Operation – Using VOC Blowing Agents to Produce Food Service Products. *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Expanded Polystyrene Foam Products - Vertical, water-quenched extruder; food-grade products. *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.8.19*
Last Update: 8/16/2023

Fiberglass-reinforced Composite Products – Pultruded, heat set resin products. *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
No-Bake Mold Manufacturing

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Binders: less than or equal to 0.07 lb-VOC/lb-binder</td>
<td>1) VOC capture and control with thermal oxidizer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Release Agents: less than or equal to 0.9 lb-VOC/lb-agent</td>
<td>2) VOC capture and control with carbon adsorption</td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.8.21

Corrosion-Resistant Polyester Resin Application

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Resin containing ≤ 46% monomer by weight</td>
<td>VOC Capture and control with thermal incineration (98% control)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanical non-atomizing resin application</td>
<td>VOC Capture and control with catalytic incineration (98% control)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enclosed gun cleaner</td>
<td>VOC Capture and control with carbon adsorption (95% control)</td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>Spray booth with exhaust filter and mechanical non-atomizing resin application</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Polyisocyanurate (PIR) Insulated Panel Manufacturing Operation Consisting of Pentamat, Laminator, and Panel Saws

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Use of pentane or equivalent blowing agent with a low global warming potential and a maximum VOC emission rate of 0.045 lb-VOC/lb-blowing agent used</td>
<td>1. At least 98% overall capture and control using a properly designed capture system served by a thermal/catalytic oxidizer, or other equivalent control achieving device or technology</td>
<td>1. At least 98% overall capture and control using a properly designed capture system served by a thermal/catalytic oxidizer, or other equivalent control achieving device or technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. At least 95% overall capture and control using a properly designed capture system served by a carbon adsorption system, or other equivalent control achieving device or technology</td>
<td>2. At least 95% overall capture and control using a properly designed capture system served by a carbon adsorption system, or other equivalent control achieving device or technology</td>
</tr>
<tr>
<td>PM10</td>
<td>Panel sawing equipment served by a fabric filter dust collector or equivalent with 99% capture and control</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.8.23*
Last Update: 8/16/2023

Finished Polyisocyanurate Product Storage Area *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.8.24

Fiberglass Mold Manufacturing (Tooling) Operation

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
</table>
| VOC | Non-atomizing polyester resin application equipment, gel coat application equipment compliant with District Rule 4684, and tooling resins and gel coats with monomer VOC content compliant with District Rule 4684 | 1) Capture and control with thermal or catalytic incineration - 98% control
2) Capture and control with carbon adsorption - 95% control | Closed Molding |
| PM10 | Spray booth with exhaust filters, non-atomizing polyester resin application equipment, and gel coat application equipment compliant with District Rule 4684 | Closed Molding |

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.8.25*

San Joaquin Valley Unified Air Pollution Control District

Last Update: 4/23/2020

Pneumatic Conveying - PVC Material

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>99% control (baghouse or equivalent)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.8.26*

Last Update: 5/31/2018

Finished Polyethylene Product Storage Area

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>98% Capture and Control</td>
<td>99% Capture and Control (100% Capture with Permanent Total Enclosure and 99% Control with Regenerative Thermal Oxidizer, or equal)</td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.9.1*

Adhesives Application - Tire Retreading

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Use of adhesives with a VOC content of 100 gram per liter (less water and exempt compounds)</td>
<td>1) Use of adhesives with zero VOC content</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Capture of VOCs and thermal or catalytic oxidation or equivalent achieving 98% control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) Capture of VOCs and carbon adsorption or equivalent achieving 95% control</td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.9.2*
Last Update: 5/11/2022

Adhesive Application Operation - Rubber Parts and Products, Brush Applied *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.9.3*
Last Update: 5/11/2022

Adhesive Application Process - Foam Products *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.9.5

Last Update: 5/11/2022

This is a Summary Page for this Class of Source

Adhesive Application Process - Wooden case manufacturing *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.9.6*

Food-Grade Carton Manufacturing - Specialty Flexographic Printing and Coatings Application

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Inks and Coatings: Water-based or UV or EB (Electro Beam) inks with VOC content < 1.5 lb/gal (180 g/l) or < 10% by volume</td>
<td>1. Capture and vent VOC to afterburner or carbon adsorption system with ≥ 98.5% destruction/recovery efficiency, OR VOC outlet ≤ 10 ppmv</td>
<td>2. Water-based inks with VOC content < 1 lb/gal (120 g/l)</td>
</tr>
<tr>
<td>Solvents: Zero VOC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.9.8*

Last Update: 8/16/2023

Adhesive Application Process – Wooden Door
Assembly, Roller applied *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.9.9*

Adhesive Application Process - Vinyl Door and Window Assembly, Non-Spray
Applied *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.9.10*

Last Update: 8/16/2023

Adhesive Application for Multi-Wall Packaging Manufacturing *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Adhesive Application Operation - Bonding of Fiberglass Boat Hulls and Decks, Non-Atomizing Application *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.9.12

Corrugated Box Gluer

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Use of adhesives with a VOC content of 0.021 lb-VOC/gal (less water and exempt compounds)</td>
<td>1. VOC Capture and Thermal/Catalytic Oxidation</td>
<td>2. VOC Capture and Carbon Adsorption</td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.9.13*
Last Update: 8/29/2018

Corrugated Board Manufacturing (Corrugator)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Steam conditioning of paper - 3.5 lb-VOC/10^6 sq ft; Adhesives - 0.015 lb-VOC/gal (less water and exempt compounds)</td>
<td>1. VOC Capture and Thermal/Catalytic Oxidation</td>
<td>2. VOC Capture and Carbon Adsorption</td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.9.14*

Last Update: 6/6/2019

Wood Parts and Products Subfloor Adhesive Application Operation

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Use of adhesives and solvents with a VOC content and application methods compliant with District Rule 4653 (Adhesives and Sealants)</td>
<td>1) At least 98% overall capture and control using a properly designed capture system served by a thermal/catalytic oxidizer, or other equivalent control achieving device or technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) At least 95% overall capture and control using a properly designed capture system served by a carbon adsorption system, or other equivalent control achieving device or technology</td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.10.1*

Last Update: 5/11/2022

Parts Cleaner - Electrical Components, Isopropyl Alcohol, = or > 440 sq. in. surface area of isopropyl alcohol *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Cold cleaner/degreaser - Metal Products, Batch Loaded, = or < 1 gal/day solvent usage *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.10.4*
Last Update: 5/11/2022

Parts Cleaner/degreaser - Automotive Parts, Portable unit,
< 10 Gallon remote reservoir *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.10.5*
Last Update: 5/28/2020

Medical Grade Silicon Products - Wipe Cleaning Operation

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Use of solvents with VOC content (less water and exempt compounds) of 7.2 lb/gal, or lower, and evaporative minimization methods, which include: - use of controlled flow dispensers (e.g. squeeze bottles) and - keeping all cloth/papers and solvent, which are not in active use, stored in closed containers</td>
<td>1) Capture and control using an enclosed booth and thermal/catalytic oxidation system</td>
<td>2) Capture and control using a hood and thermal/catalytic oxidation system</td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.10.6*
Last Update: 8/16/2023

Metal Parts, Open-top, Powder Coating Stripping Tank *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.10.7*
Last Update: 8/16/2023

Metal Parts and Products Cleaning - Open-top, Heated, Vapor Degreaser
RESCINDED

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.11.1*

Tire Manufacturing - Steel Belt Milling/Calendar (no cementing/gluing performed)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>1) Thermal incineration (with 65% to 90% estimated capture efficiency)</td>
<td>2) Carbon adsorption (with 65% to 90% estimated capture efficiency)</td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.11.2*
Last Update: 4/21/2020

Non-woven Polyester Foam Production - = or < 1800 lb Foam/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.11.3*
Last Update: 5/21/2020

Cardboard Box Laminator

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Use of adhesive with a VOC content of 0.021 lb/gal (less water and exempt compounds)</td>
<td>1) VOC Capture and Regenerative Thermal/Catalytic Oxidation</td>
<td>2) VOC Capture and Carbon Adsorption</td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.11.5*

Circuit Board Manufacturing - Soldermask Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.11.6*

Railcar Unloading - Transfer of Non-petroleum Organic Liquids into Delivery Vehicles *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.11.7*
Last Update: 8/16/2023

Shop Towel Laundering Consisting of Sorting Tables, Washing Machines, and Wastewater Treatment System *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Rubber Tire Retreading - Curing Chamber (autoclave)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>1) VOC capture and control with thermal or catalytic incineration (98% control)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2) VOC capture and control with carbon adsorption (95% control)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.11.9*

Rubber Tire Retreading - Buffing Operation (Tread Removal)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td></td>
<td>1) VOC capture and control with thermal or catalytic incineration (98% control)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) VOC capture and control with carbon adsorption (95% control)</td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>Water spray at rasp, and vacuum system ducted to a dust collector with 99% control</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 4.11.10*

Last Update: 8/16/2023

Circuit Board Manufacturing – Flux Application for Wave Soldering Machine *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Chemical Plants Pump and Compressor Seals *

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Chemical Evaporator/Dryer/Oven

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
</table>
| VOC | Minimize VOC emissions units best management practises | 1. Incineration System - RTO/Catalytic Oxidizer
2. Incineration System - Ultra Low-NOx Flare
3. Carbon Adsorption | |

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.12.4
Last Update: 7/8/2020

Ethanol Fermentation Process Tanks Including: Fermentation Tanks and Beerwell Storage Tanks

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>99.5% VOC emissions control efficiency (fermentation wet scrubber vented to a CO2 recovery plant with a condenser and a high pressure scrubber; or equivalent)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.12.5
Last Update: 8/16/2023

Emission Units (Excluding Wet Cake Dryer) Involved in the Ethanol Distillation and Wet Cake Process *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Ethanol Manufacturing Facility Distillers Dried Grains with Solubles (DDGS)
Dryer *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Distillers Dried Grains with Solubles (DDGS) Cooler *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.12.8

Last Update: 8/16/2023

Ethanol Wet Cake Storage and Loadout Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.12.9 *
Last Update: 8/16/2023

Ethanol Production: Solar Drying of Distillers Cake *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source