Best Available Control Technology (BACT) Guideline 5.1.1*

Last Update: 5/11/2022

Feed Mill - Dry Grain Transfer from Receiving Pit to Storage, = or > 4,000 tons/day *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.1.2*

Last Update: 12/30/2021

Feed Mill - Truck Loadout

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
PM10	Enclosed loading and 99% control, vented to a baghouse or equivalent		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.1.3*

Last Update: 5/11/2022

Grain & Feed Transfer Operation - Transportable Auger *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.1.4*

Last Update: 5/11/2022

Receiving and Storage and Operation - Corn, > or = 112 tons/day *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.1.5*

Last Update: 4/27/2020

Railcar Receiving Pit - Dry Grain/Products, = or > 1,700 tons/day

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	Receiving pit using choke feeding and vented to a baghouse/dust collector	 Receiving operation housed in an enclosed building or structure with receiving pit using choke feeding and vented to a baghouse/dust collector 	
		 Receiving operation housed in structure with doors open with receiving pit using choke feeding and vented to a baghouse/dust collector 	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.1.6*

Last Update: 4/20/2020

Ship Unloading System - Bulk Cottonseed Receiving Hopper

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
PM10	Receiving hopper vented to 1D-3D cyclone collectors exhausting to a baghouse		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.1.7*

Last Update: 5/4/2020

Railcar Unloading - Transportable, Material Conveying Equipment

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	Railcar choke feeding or railcar drop height less than 12 inches, enclosed conveyor vented to a control device with at least 99% control (baghouse or equivalent), and loadout		1) Pneumatic unloader vented to a control device with at least 99% control (baghouse or equivalent)
	served by a flexible spout. Opacity not to exceed 5%.		2) Receiving pit vented to a control device with at least 99% control (baghouse or equivalent) and loadout served by a flexible spout
			3) Receiving pit vented to a 1D-3D cyclone

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.1.8*

Last Update: 9/27/2021

Non-Delinted Cottonseed - Truck Loadout Operation

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	Visible emissions from the truck loadout operation not to exceed 10% opacity for	1. Enclosed loadout area vented to pre- cleaning cyclone(s) and a baghouse	
	any 3 minutes in any one hour period	2. Enclosed loadout area vented to 1D- 3D or equivalent cyclone(s)	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.2.1*

Last Update: 5/11/2022

Almond Hulling - = or > 5 tons/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.2.2*

Last Update: 6/14/2022

Almond Processing - Sizing Operation (In-shell Almonds and Shelled Almond Meats)

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
PM10	≥ 99% Control (Fabric Filter Baghouse, Cartridge-Type Dust Collector, or Equivalent)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.2.3*

Last Update: 11/1/2022

Pistachio Nut Processing - Precleaning Operations, >= 375 tons/day in-hull pistachios

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
PM10	1D-3D cyclone, high- efficiency cyclone, or equivalent achieving at least 80% control		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.2.4*

Last Update: 3/6/2020

Feed Mill - Grain Grinding, Dry Process

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
PM10	Baghouse, or equivalent (99% or greater control efficiency)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.2.5*

Last Update: 3/6/2020

Feed Mill - Grain Cleaner with Aspirator

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
PM10	Aspirator exhausted to a fabric filter baghouse, or equivalent (99% or greater control efficiency)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.2.6*

Last Update: 5/11/2022

Feed Mill - High Moisture Grain Pelletizing & Drying Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.2.7*

Last Update: 5/11/2022

Grain Cooler - Feed Mill, Steam Softened for Grain Rolling or *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.2.8*

Last Update: 5/14/2020

Propylene Oxide Fumigation - Fumigation Chamber

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
VOC	98% Control Efficiency (wet scrubber, flare, or equal)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.2.9*

Last Update: 5/14/2020

Propylene Oxide Fumigation - Off-Gassing Process**

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment	
VOC	1) 98% Control Efi or equal)	1) 98% Control Efficiency (Wet Scrubber, or equal)	Efficiency (Wet Scrubber,	
		2) 95% Control Efficiency (Carbon Adsorption or equal)		
		3) 80% Control Efficiency (Refrigerated vapor condenser, or equal)		

**This operation does not include the initial fumigation operation in the chamber which is covered by Guideline 5.2.8.

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.2.10*

Last Update: 8/16/2023

Wet Corn Mill - High Moisture Gluten Dryer *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.2.11*

Last Update: 8/16/2023

Rice Mill - Protein Drying and Bagging Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.2.12*

Last Update: 6/28/2023

Phosphine fumigation of nuts, dried fruit, grain, and beans

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
Phosphine (T-BACT)		Carbon Absorption or Equivalent (95% control)	
Ammonia (NH3)	Stacked Bins, Bins with Plastic Liners, Palletized Stacks, Shipping Containers, Fumigation Chambers, Warehouses, Storage Silos and Stockpiles: phosphine gas or a mixture of phosphine gas and carbon dioxide from pressurized cylinders, fumigated inside gas tight tarps, gas tight bin liners or a gas tight enclosure*	Ammonia Scrubber (98% control) (not applicable to infield operations)	

*If it is suitably demonstrated that it is infeasible for a facility to obtain or use phosphine gas pressurized cylinders, aluminum phosphide based solid fumigants can be used in place of phosphine gas to satisfy BACT.

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.2.13*

Last Update: 3/29/2023

Walnut Receiving and Precleaning

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
PM10	70% Overall Capture and Control (Cyclone or Equivalent)	 1.99% Overall Capture and Control (Fabric Filter Baghouse Dust Collector, Cartridge-Type Dust Collector, or Equivalent) 2. 88% Overall Capture and Control (Enhanced 1D-3D Cyclone or Equivalent) 	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.2.14*

Last Update: 9/12/2022

Almond Receiving and Precleaning

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
PM10	≥99% Control (Fabric Filter Baghouse, Cartridge-Type Dust Collector, or equivalent)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.3.1*

Last Update: 6/15/2020

Cotton Gin Operation

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
PM10	Enhanced 1D-3D cyclone collectors, or 1D-3D cyclone collectors with expansion chambers, or rotary drum filter, or equivalent		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.3.2*

Last Update: 8/16/2023

Cotton Gin - Natural Gas-Fired Dryer, = or < 8 MMBtu/hr Burner *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.3.3*

Last Update: 5/11/2022

Cotton Seed Delinting *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.3.4*

Last Update: 5/11/2022

Vegetable/Cotton Seed Decortication Process, > or = 1400 tons/day *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.3.5*

Last Update: 4/21/2020

Kenaf Fiber Processing - Separation Operation, = or > 3.0 MMBtu/hr burner, = or > 72 ton raw material/day *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.4.1*

Last Update: 6/18/2020

Fruit Storage and SO2 Fumigation: = or > 21,760 cu. ft. Fumigation Rooms

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
SOx	Pre-cooling and cold storage SO2 fumigation of fruits using total utilization method of fumigation, and/or "Defrost Cycle" scrubbing		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.4.2*

Last Update: 6/18/2020

Fruit Drying and SO2 Fumigation: = or > 21760 cu. Ft. Fumigation Rooms

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
SOx	Packed bed scrubber using recirculated caustic liquid (pH 8 to 10)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.4.3*

Last Update: 5/11/2022

Dry Bean Processing - Methyl Bromide Fumigation Chamber, < or = 14,400 cubic feet *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.4.4*

Last Update: 4/21/2020

Fruit Roll Manufacturing - Mixing/Processing, = or > 86,000 lb mash/day *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.4.5*

Last Update: 4/30/2020

Garlic and Onion Seed Processing

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
PM10	Aspirators and vacuum collectors vented to a baghouse		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.4.6*

Last Update: 4/30/2020

Garlic Grading Line

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	Fabric Filter Baghouse (99% Control Effectiveness)		
	or		
	Hand-picked Garlic with 1D- 3D Cyclone (99% Control Effectiveness)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.4.7*

Last Update: 4/7/2020

Sunflower Seeds - Processing with Brine Solution & Roasting *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.4.8*

Last Update: 9/27/2021

Fruit Fumigation - Ethanol Soaking Tank

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
VOC		 Wet scrubber with 99% or greater control efficiency Thermal incinerator with 98% or greater control efficiency Biofilter with 90% or greater control efficiency 	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.4.9*

Last Update: 4/17/2020

Tomato Powder Manufacturing

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
PM10	1D-3D cyclone with wet scrubber (87% control efficiency)	1) 1D-3D cyclone with venturi wet scrubber (99% control efficiency)	
		 2) 1D-3D cyclone with electrostatic precipitator (95% control efficiency) 	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.4.10*

Last Update: 8/16/2023

Dried Fruit SO2 Fumigation Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.4.11*

Last Update: 8/16/2023

Onion Grading and Packing Line *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.4.12*

Last Update: 8/16/2023

Methyl Bromide Fumigation Chamber < 100,000 lb-CH3Br/year *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.4.13*

Last Update: 9/7/2018

Wine Storage Tank - Non-Wood Material**

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Insulation or Equivalent***,	1. Capture of VOCs and thermal or	
	Pressure Vacuum Relief Valve (PVRV) set within	catalytic oxidation (98% control)	
	10% of the maximum	Capture of VOCs and carbon	
	allowable working pressure	adsorption (95% control)	
	of the tank; "gas-tight" tank		
	operation; and continuous	3. Capture of VOCs and absorption (90%	
	storage temperature not	control)	
	exceeding 75 degrees F,		
	achieved within 60 days of	Capture of VOCs and condensation	
	completion of fermentation	(70% control)	

This guideline is applicable to a wine storage tank that is not constructed out of wooden materials. *Tanks made of heat-conducting materials such as stainless steel may be insulated or stored indoors (in a completely enclosed building, except for vents, doors and other essential openings) to limit exposure ot diurnal temperature variations. Tanks made entirely of nonconducting materials such as concrete (except for fittings) are considered self-insulating.

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.4.14*

Last Update: 8/16/2023

Wine Fermentation Tank *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.4.15*

Last Update: 5/6/2020

Distilled Spirits Storage Tank

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Insulation or Equivalent**, Pressure Vacuum Relief Valve (PVRV) set within 10% of the maximum	1) Capture of VOCs and thermal or catalytic oxidation or equivalent (98% control)	
	allowable working pressure of the tank; "gas-tight" tank operation	2) Capture of VOCs and carbon adsorption or equivalent (95% control)	
	operation	 Capture of VOCs and absorption or equivalent (90% control) 	
		4) Refrigerated Storage (70% control)	

**Tank may be insulated or stored indoors (in a completely enclosed building except for vents doors and other essential openings) to limit exposure to diurnal temperature variations.

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.4.16*

Last Update: 5/13/2020

Ethanol Evaporator System

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC		1) Capture of VOCs and refrigerated condensation or equivalent (99% control)	
		2) Capture of VOCs and thermal or catalytic oxidation or equivalent (>95% control)	
		 Capture of VOCs and refrigerated absorption or equivalent (95% control) 	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.4.17*

Last Update: 9/18/2019

Wine Storage Tank - Wood Material

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Maintain wine temperature in the tank at or below 75 degrees F, achieved within 60 days of completion of fermentation	 98% overall control (properly designed capture system vented to a regenerative thermal oxidizer or equal) 95% overall control (properly designed capture system vented to a carbon adsorption system or equal) 	
		3. 80% overall control (properly designed capture system vented to a scrubber system or equal)	
		4. 70% overall control (properly designed capture system vented to a condensation system or equal)	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.4.18*

Last Update: 8/16/2023

Methyl Bromide Fumigation Chamber > or = 100,000 lb-CH3Br/year *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.5.1*

Last Update: 10/10/2022

Snack Chip Steam-heated Conditioning Units - Fryer and De-oiler *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.5.2*

Last Update: 4/21/2020

Tortilla Chip Line - Ambient Air Cooler, = or < 3300 lb/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.5.3*

Last Update: 6/10/2020

Candy Panning (Engrossing) Operation**

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC		1) 98% or greater overall control (100% capture with permanent total enclosures designed in accordance with EPA Method 204 and at least 98% destruction using regenerative thermal oxidizer, catalytic oxidizer, carbon adsorption or equivalent overall control technology	
		2) 90% or greater overall control (100% capture with permanent total enclosures designed in accordance with EPA Method 204 and at least 90% destruction using bio filter or equivalent overall control technology	

**A process in which candy center is coated to a desired thickness with a mixture of sugar syrup, coloring, flavoring etc. in a rotating pan.

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.5.4*

Last Update: 7/1/2020

Candy Polishing Operation**

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
VOC	At least 98% overall control (100% capture with permanent total enclosures designed in accordance with EPA Method 204 and 98% control using regenerative thermal oxidizer, catalytic oxidizer) or equivalent overall control achieving technology		

**A process in which a final color coat and/or glaze is applied and the candy exterior is polished to a shiny finish.

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.5.5*

Last Update: 10/6/2022

Snack Chip Seasoning System

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
PM10		At least 95% reduction of captured particulate matter emissions using wet scrubber, or equivalent dust control system	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.5.6*

Last Update: 10/6/2022

Snack Chip Ambient Air Cooler

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
PM10	Use properly engineered high velocity air filtration system with oil baffle type filters, or equivalent filter system (70% control)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.6.1*

Last Update: 4/21/2020

Yeast Fermenter *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.6.2*

Last Update: 8/16/2023

Animal Feed Supplement Manufacturing - Palm Oil & Calcium Oxide Process *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.6.3*

Last Update: 8/16/2023

Animal Feed Supplements - Steam-Heated Molasses Cooker *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.6.4*

Last Update: 8/16/2023

Bakery Waste Products Dryer *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.6.5*

Last Update: 2/1/2006

Broiler House ** Moved to 5.7.1**

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	19% control 1) completely enclosed mechanical ventilated broiler housing with evaporative cooling pads, mixing fans, and a computer control system using thermostats, sensors, and timers to control environmental conditions; all birds fed in accordance with NRC or other District-approved guidelines; houses completely cleaned out at least twice per year; and all mortality removed from houses twice per day	 1) 98% control (capture and thermal incineration) 2) 95% control (capture and catalytic incineration) 3) 95% control (capture and carbon adsorption) 4) 80% control (capture and biofiltration) 	
	OR		
	2) acidifying litter amendments; all birds fed in accordance with NRC or other District-approved guidelines; and all mortality removed from houses twice per day		

NH3 55% control

80% control (capture and biofiltration)

1) completely enclosed mechanical ventilated broiler housing with evaporative cooling pads, mixing fans, and a computer control system using thermostats, sensors, and timers to control environmental conditions; all birds fed in accordance with NRC or other District-approved guidelines; houses completely cleaned out at least twice per year; and all mortality removed from houses twice per day

OR

2) acidifying litter amendments; all birds fed in accordance with NRC or other District-approved guidelines; and all mortality removed from houses twice per day

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.7.1*

Last Update: 6/22/2022

Poultry Broiler House

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	 1.a) Enclosed housing with mechanical ventilation and computerized control of environmental conditions using sensors, or b) Use of acidifying litter amendments; AND 2.Comply with applicable District Rule 4570 Feed and Housing Mitigation Measures; AND 3.Houses completely cleaned out at least twice per year; AND 4.All mortality removed from houses at least once per day 	 1.98% Overall Capture and Control (Thermal/Catalytic Incineration with a Concentrator) 2.95% Overall Capture and Control (Carbon Adsorption) 3.80% Overall Capture and Control (Biofiltration) 4.70% Overall Capture and Control (Wet Scrubber) 	
PM10	Use of the following broiler house design and management practices: 1.Weatherproof housing structure, AND 2.Minimum disturbance of manure/litter, AND 3.Covered manure/litter piles	 1.99% Overall Capture and Control (Cyclones followed by Electrostatic Precipitator or Baghouse) 2.95% Overall Capture and Control: (Cyclones Followed by Wet Scrubber) 3.60% Overall Capture and Control (High Efficiency Cyclones) 	
Ammonia (NH3)	 1.a) Enclosed housing with mechanical ventilation and computerized control of environmental conditions using sensors, or b) Use of acidifying litter amendments; AND 2.Comply with applicable District Rule 4570 Feed and Housing Mitigation Measures; AND 3.Houses completely cleaned out at least twice per year; AND 4.All mortality removed from houses at least once per day 	1.80% Overall Capture and Control (Biofiltration or Wet Scrubber)	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.7.2*

Last Update: 8/16/2023

Poultry Layer House *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.7.3*

Last Update: 8/16/2023

Turkey House *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.8.1*

Last Update: 8/16/2023

Milking Parlor *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.8.2*

Last Update: 8/16/2023

Cow Housing - Freestall and Saudi-Style Barns *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.8.3*

Last Update: 8/16/2023

Cow Housing - Open Corrals *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.8.4*

Last Update: 8/16/2023

Cow Housing - Loafing Barns *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.8.5*

Last Update: 8/16/2023

Cow Housing - Area for Baby Calves (0-3 months) *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.8.6*

Last Update: 8/16/2023

Liquid Manure Handling - Lagoon/Storage Pond *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.8.7*

Last Update: 8/16/2023

Liquid Manure Handling - Liquid/Slurry Land Application *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.8.8*

Last Update: 8/16/2023

Solid Manure Handling - Storage/Separated Solids Piles *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.8.9*

Last Update: 8/16/2023

Solid Manure Handling - Land Application *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.8.10*

Last Update: 8/16/2023

Feed Storage and Handling - Silage Piles *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.8.11*

Last Update: 8/16/2023

Feed Storage and Handling - Feed/TMR *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 5.8.12*

Last Update: 8/2/2018

Dairy Manure Digester with Backup/Emergency Flare

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
VOC	Open flare (98% control efficiency)	Ultra-low emissions (ULE) enclosed flare (99% control efficiency)	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.