San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.1.1*
Last Update: 5/11/2022

Feed Mill - Dry Grain Transfer from Receiving Pit to Storage, = or > 4,000 tons/day *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Feed Mill - Truck Loadout

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Enclosed loading and 99% control, vented to a baghouse or equivalent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.1.3*
Last Update: 5/11/2022

Grain & Feed Transfer Operation - Transportable Auger *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 5.1.4*

Last Update: 5/11/2022

Receiving and Storage and Operation - Corn, > or = 112 tons/day *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Railcar Receiving Pit - Dry Grain/Products, = or > 1,700 tons/day

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Receiving pit using choke feeding and vented to a baghouse/dust collector</td>
<td>1) Receiving operation housed in an enclosed building or structure with receiving pit using choke feeding and vented to a baghouse/dust collector</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Receiving operation housed in structure with doors open with receiving pit using choke feeding and vented to a baghouse/dust collector</td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 5.1.6

Last Update: 4/20/2020

Ship Unloading System - Bulk Cottonseed Receiving Hopper

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Receiving hopper vented to 1D-3D cyclone collectors exhausting to a baghouse</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 5.1.7*

Last Update: 5/4/2020

Railcar Unloading - Transportable, Material Conveying Equipment

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Railcar choke feeding or railcar drop height less than 12 inches, enclosed conveyor vented to a control device with at least 99% control (baghouse or equivalent), and loadout served by a flexible spout. Opacity not to exceed 5%.</td>
<td>1) Pneumatic unloader vented to a control device with at least 99% control (baghouse or equivalent)</td>
<td>2) Receiving pit vented to a control device with at least 99% control (baghouse or equivalent) and loadout served by a flexible spout 3) Receiving pit vented to a 1D-3D cyclone</td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Non-Delinted Cottonseed - Truck Loadout Operation

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Visible emissions from the truck loadout operation not to exceed 10% opacity for any 3 minutes in any one hour period</td>
<td>1. Enclosed loadout area vented to pre-cleaning cyclone(s) and a baghouse</td>
<td>2. Enclosed loadout area vented to 1D-3D or equivalent cyclone(s)</td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Almond Hulling - = or > 5 tons/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.2.2*
Last Update: 6/14/2022

Almond Processing - Sizing Operation (In-shell Almonds and Shelled Almond Meats)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>≥ 99% Control (Fabric Filter Baghouse, Cartridge-Type Dust Collector, or Equivalent)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 5.2.3

Last Update: 11/1/2022

Pistachio Nut Processing - Precleaning Operations, >= 375 tons/day in-hull pistachios

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>1D-3D cyclone, high-efficiency cyclone, or equivalent achieving at least 80% control</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.2.4

Last Update: 3/6/2020

Feed Mill - Grain Grinding, Dry Process

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Baghouse, or equivalent (99% or greater control efficiency)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 5.2.5*

Last Update: 3/6/2020

Feed Mill - Grain Cleaner with Aspirator

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Aspirator exhausted to a fabric filter baghouse, or equivalent (99% or greater control efficiency)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Feed Mill - High Moisture Grain Pelletizing & Drying Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.2.7*
Last Update: 5/11/2022

Grain Cooler - Feed Mill, Steam Softened for Grain Rolling or *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Propylene Oxide Fumigation - Fumigation Chamber

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>98% Control Efficiency (wet scrubber, flare, or equal)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Propylene Oxide Fumigation - Off-Gasing Process**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td></td>
<td>1) 98% Control Efficiency (Wet Scrubber, or equal)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) 95% Control Efficiency (Carbon Adsorption or equal)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) 80% Control Efficiency (Refrigerated vapor condenser, or equal)</td>
<td></td>
</tr>
</tbody>
</table>

**This operation does not include the initial fumigation operation in the chamber which is covered by Guideline 5.2.8.

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.2.10*
Last Update: 8/16/2023

Wet Corn Mill - High Moisture Gluten Dryer *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 5.2.11*
Last Update: 8/16/2023

Rice Mill - Protein Drying and Bagging Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Phosphine fumigation of nuts, dried fruit, grain, and beans

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphine (T-BACT)</td>
<td>Carbon Absorption or Equivalent (95% control)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia (NH3)</td>
<td>Stacked Bins, Bins with Plastic Liners, Palletized Stacks, Shipping Containers, Fumigation Chambers, Warehouses, Storage Silos and Stockpiles: phosphine gas or a mixture of phosphine gas and carbon dioxide from pressurized cylinders, fumigated inside gas tight tarps, gas tight bin liners or a gas tight enclosure*</td>
<td>Ammonia Scrubber (98% control) (not applicable to infield operations)</td>
<td></td>
</tr>
</tbody>
</table>

*If it is suitably demonstrated that it is infeasible for a facility to obtain or use phosphine gas pressurized cylinders, aluminum phosphide based solid fumigants can be used in place of phosphine gas to satisfy BACT.

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 5.2.13

Walnut Receiving and Pre-cleaning

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>70% Overall Capture and Control (Cyclone or Equivalent)</td>
<td>1.99% Overall Capture and Control (Fabric Filter Baghouse Dust Collector, Cartridge-Type Dust Collector, or Equivalent)</td>
<td>2.88% Overall Capture and Control (Enhanced 1D-3D Cyclone or Equivalent)</td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>≥99% Control (Fabric Filter Baghouse, Cartridge-Type Dust Collector, or equivalent)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Enhanced 1D-3D cyclone collectors, or 1D-3D cyclone collectors with expansion chambers, or rotary drum filter, or equivalent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cotton Gin - Natural Gas-Fired Dryer, = or < 8 MMBtu/hr Burner *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 5.3.3*

Cotton Seed Delinting *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 5.3.4*

Vegetable/Cotton Seed Decortication Process, > or = 1400 tons/day
RESCINDED

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.3.5*

Kenaf Fiber Processing - Separation Operation, = or > 3.0 MMBtu/hr burner, = or > 72 ton raw material/day *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Fruit Storage and SO2 Fumigation: = or > 21,760 cu. ft. Fumigation Rooms

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOx</td>
<td>Pre-cooling and cold storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SO2 fumigation of fruits</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>using total utilization method of fumigation, and/or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>"Defrost Cycle" scrubbing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Fruit Drying and SO2 Fumigation: = or > 21760 cu. Ft. Fumigation Rooms

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOx</td>
<td>Packed bed scrubber using recirculated caustic liquid (pH 8 to 10)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 5.4.3*

San Joaquin Valley
Unified Air Pollution Control District

Last Update: 5/11/2022

Dry Bean Processing - Methyl Bromide Fumigation Chamber, < or = 14,400 cubic feet *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.4.5
Last Update: 4/30/2020

Garlic and Onion Seed Processing

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Aspirators and vacuum collectors vented to a baghouse</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 5.4.6

Last Update: 4/30/2020

Garlic Grading Line

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Fabric Filter Baghouse (99% Control Effectiveness)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hand-picked Garlic with 1D-3D Cyclone (99% Control Effectiveness)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 5.4.8*

Last Update: 9/27/2021

Fruit Fumigation - Ethanol Soaking Tank

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>1. Wet scrubber with 99% or greater control efficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Thermal incinerator with 98% or greater control efficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Biofilter with 90% or greater control efficiency</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.4.9

This is a Summary Page for this Class of Source

Last Update: 4/17/2020

Tomato Powder Manufacturing

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
</table>
| PM10 | 1D-3D cyclone with wet scrubber (87% control efficiency) | 1) 1D-3D cyclone with venturi wet scrubber (99% control efficiency)
2) 1D-3D cyclone with electrostatic precipitator (95% control efficiency) | |

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.4.10*
Last Update: 8/16/2023

Dried Fruit SO2 Fumigation Operation *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 5.4.11*

Last Update: 8/16/2023

Onion Grading and Packing Line *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.4.12*
Last Update: 8/16/2023

Methyl Bromide Fumigation Chamber < 100,000 lb-CH3Br/year *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Wine Storage Tank - Non-Wood Material

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Insulation or Equivalent***, Pressure Vacuum Relief Valve (PVRV) set within 10% of the maximum allowable working pressure of the tank; "gas-tight" tank operation; and continuous storage temperature not exceeding 75 degrees F, achieved within 60 days of completion of fermentation</td>
<td>1. Capture of VOCs and thermal or catalytic oxidation (98% control)</td>
<td>4. Capture of VOCs and condensation (70% control)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Capture of VOCs and carbon adsorption (95% control)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Capture of VOCs and absorption (90% control)</td>
<td></td>
</tr>
</tbody>
</table>

This guideline is applicable to a wine storage tank that is not constructed out of wooden materials.*

***Tanks made of heat-conducting materials such as stainless steel may be insulated or stored indoors (in a completely enclosed building, except for vents, doors and other essential openings) to limit exposure of diurnal temperature variations. Tanks made entirely of non-conducting materials such as concrete (except for fittings) are considered self-insulating.

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.4.14*
Last Update: 8/16/2023

Wine Fermentation Tank *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 5.4.15

Last Update: 5/6/2020

Distilled Spirits Storage Tank

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Insulation or Equivalent**, Pressure Vacuum Relief Valve (PVRV) set within 10% of the maximum allowable working pressure of the tank; “gas-tight” tank operation</td>
<td>1) Capture of VOCs and thermal or catalytic oxidation or equivalent (98% control)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Capture of VOCs and carbon adsorption or equivalent (95% control)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) Capture of VOCs and absorption or equivalent (90% control)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4) Refrigerated Storage (70% control)</td>
<td></td>
</tr>
</tbody>
</table>

Tank may be insulated or stored indoors (in a completely enclosed building except for vents, doors and other essential openings) to limit exposure to diurnal temperature variations.

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 5.4.16*

San Joaquin Valley Unified Air Pollution Control District

Ethanol Evaporator System

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>1) Capture of VOCs and refrigerated condensation or equivalent (99% control)</td>
<td>2) Capture of VOCs and thermal or catalytic oxidation or equivalent (>95% control)</td>
<td>3) Capture of VOCs and refrigerated absorption or equivalent (95% control)</td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Wine Storage Tank - Wood Material

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Maintain wine temperature in the tank at or below 75 degrees F, achieved within 60 days of completion of fermentation</td>
<td>1. 98% overall control (properly designed capture system vented to a regenerative thermal oxidizer or equal)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. 95% overall control (properly designed capture system vented to a carbon adsorption system or equal)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. 80% overall control (properly designed capture system vented to a scrubber system or equal)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. 70% overall control (properly designed capture system vented to a condensation system or equal)</td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.4.18*
Last Update: 8/16/2023

Methyl Bromide Fumigation Chamber > or = 100,000 lb-CH3Br/year *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.5.1*
Last Update: 10/10/2022

Snack Chip Steam-heated Conditioning Units - Fryer and De-oiler *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.5.2*
Last Update: 4/21/2020

Tortilla Chip Line - Ambient Air Cooler, = or < 3300 lb/hr *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.5.3*

Last Update: 6/10/2020

Candy Panning (Engrossing) Operation

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
</table>
| VOC | 1) 98% or greater overall control (100% capture with permanent total enclosures designed in accordance with EPA Method 204 and at least 98% destruction using regenerative thermal oxidizer, catalytic oxidizer, carbon adsorption or equivalent overall control technology
 | 2) 90% or greater overall control (100% capture with permanent total enclosures designed in accordance with EPA Method 204 and at least 90% destruction using bio filter or equivalent overall control technology |

*BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.5.4*

Last Update: 7/1/2020

Candy Polishing Operation**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>At least 98% overall control (100% capture with permanent total enclosures designed in accordance with EPA Method 204 and 98% control using regenerative thermal oxidizer, catalytic oxidizer) or equivalent overall control achieving technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**A process in which a final color coat and/or glaze is applied and the candy exterior is polished to a shiny finish.

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.5.5

Last Update: 10/6/2022

Snack Chip Seasoning System

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td></td>
<td>At least 95% reduction of captured particulate matter emissions using wet scrubber, or equivalent dust control system</td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 5.5.6*

Snack Chip Ambient Air Cooler

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Use properly engineered high velocity air filtration system with oil baffle type filters, or equivalent filter system (70% control)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 5.6.1*

Last Update: 4/21/2020

Yeast Fermenter *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Animal Feed Supplement Manufacturing - Palm Oil & Calcium Oxide Process

RESCINDED

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Animal Feed Supplements - Steam-Heated Molasses Cooker *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.6.4*
Last Update: 8/16/2023

Bakery Waste Products Dryer *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 5.6.5*

Broiler House **Moved to 5.7.1**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>19% control</td>
<td>1) 98% control (capture and thermal incineration)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) 95% control (capture and catalytic incineration)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) 95% control (capture and carbon adsorption)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4) 80% control (capture and biofiltration)</td>
<td></td>
</tr>
</tbody>
</table>

1) completely enclosed mechanical ventilated broiler housing with evaporative cooling pads, mixing fans, and a computer control system using thermostats, sensors, and timers to control environmental conditions; all birds fed in accordance with NRC or other District-approved guidelines; houses completely cleaned out at least twice per year; and all mortality removed from houses twice per day

OR

2) acidifying litter amendments; all birds fed in accordance with NRC or other District-approved guidelines; and all mortality removed from houses twice per day
NH3 55% control

80% control (capture and biofiltration)

1) completely enclosed mechanical ventilated broiler housing with evaporative cooling pads, mixing fans, and a computer control system using thermostats, sensors, and timers to control environmental conditions; all birds fed in accordance with NRC or other District-approved guidelines; houses completely cleaned out at least twice per year; and all mortality removed from houses twice per day

OR

2) acidifying litter amendments; all birds fed in accordance with NRC or other District-approved guidelines; and all mortality removed from houses twice per day

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Poultry Broiler House

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>1. a) Enclosed housing with mechanical ventilation and computerized control of environmental conditions using sensors, or b) Use of acidifying litter amendments; AND 2. Comply with applicable District Rule 4570 Feed and Housing Mitigation Measures; AND 3. Houses completely cleaned out at least twice per year; AND 4. All mortality removed from houses at least once per day</td>
<td>1.98% Overall Capture and Control (Thermal/Catalytic Incineration with a Concentrator) 2.95% Overall Capture and Control (Carbon Adsorption) 3.80% Overall Capture and Control (Biofiltration) 4.70% Overall Capture and Control (Wet Scrubber)</td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>Use of the following broiler house design and management practices: 1. Weatherproof housing structure, AND 2. Minimum disturbance of manure/litter, AND 3. Covered manure/litter piles</td>
<td>1.99% Overall Capture and Control (Cyclones followed by Electrostatic Precipitator or Baghouse) 2.95% Overall Capture and Control (Cyclones Followed by Wet Scrubber) 3.60% Overall Capture and Control (High Efficiency Cyclones)</td>
<td></td>
</tr>
<tr>
<td>Ammonia (NH3)</td>
<td>1. a) Enclosed housing with mechanical ventilation and computerized control of environmental conditions using sensors, or b) Use of acidifying litter amendments; AND 2. Comply with applicable District Rule 4570 Feed and Housing Mitigation Measures; AND 3. Houses completely cleaned out at least twice per year; AND 4. All mortality removed from houses at least once per day</td>
<td>1.80% Overall Capture and Control (Biofiltration or Wet Scrubber)</td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.7.2*
Last Update: 8/16/2023

Poultry Layer House *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 5.8.1*

Last Update: 8/16/2023

Milking Parlor *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 5.8.2*

Cow Housing - Freestall and Saudi-Style Barns *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.8.3*
Last Update: 8/16/2023

Cow Housing - Open Corrals *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 5.8.6*

Last Update: 8/16/2023

Liquid Manure Handling - Lagoon/Storage Pond *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 5.8.7*

Liquid Manure Handling - Liquid/Slurry Land Application *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.8.8*
Last Update: 8/16/2023

Solid Manure Handling - Storage/Separated Solids Piles *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.8.9*
Last Update: 8/16/2023

Solid Manure Handling - Land Application *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.8.10*
Last Update: 8/16/2023

Feed Storage and Handling - Silage Piles *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
San Joaquin Valley
Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 5.8.11*
Last Update: 8/16/2023

Feed Storage and Handling - Feed/TMR *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source
Best Available Control Technology (BACT) Guideline 5.8.12*

Last Update: 8/2/2018

Dairy Manure Digester with Backup/Emergency Flare

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Achieved in Practice or contained in the SIP</th>
<th>Technologically Feasible</th>
<th>Alternate Basic Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>Open flare (98% control efficiency)</td>
<td>Ultra-low emissions (ULE) enclosed flare (99% control efficiency)</td>
<td></td>
</tr>
</tbody>
</table>

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

This is a Summary Page for this Class of Source